Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 655: 123982, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38460770

ABSTRACT

Recently, World Health Organization declared antimicrobial resistance as the third greatest threat to human health. Absence of known cross-resistance, new class, new target, and a new mode of action are few major strategies being undertaken by researches to combat multidrug resistant pathogen. PPEF.3HCl, a bisbenzimidazole was developed as highly potent antibacterial agent against ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens, targeting topoisomerase IA. The present work encompasses a radical on-site generation of In-situ nanosuspension of PPEF.3HCl with enhanced efficacy against methicillin resistant S. aureus in septicemia model. We have generated instantaneously a PPEF.3HCl nanosuspension (IsPPEF.3HCl-NS) by mixing optimized monophasic PPEF.3HCl preconcentrate in propylene glycol into an aqueous medium comprising tween 80 as stabilizer. The IsPPEF.3HCl-NS showed precipitation efficiency of > 90 %, average particle size < 500 nm, retained upto 5 h, a negative zeta potential and bi/trimodal particle size distribution. Differential scanning calorimetry, X-ray diffraction confirmed partial amorphization and transmission electron microscopy revealed spherical particles. IsPPEF.3HCl-NS was non-hemolytic and exhibited good stability in serum. More significantly, it exhibited a âˆ¼ 1.6-fold increase in macrophage uptake compared to free PPEF.3HCl in the RAW 264.7 macrophage cell line. Confocal microscopy revealed accumulation of IsPPEF.3HCl-NS within the lysosomal compartment and cell cytosol, proposing high efficacy. In terms of antimicrobial efficacy, IsPPEF.3HCl-NS outperforms free PPEF.3HCl against clinical methicillin sensitive and resistant S. aureus strains. In a pivotal experiment, IsPPEF.3HCl-NS exhibited over 83 % survival at 8 mg/kg.bw and an impressive reduction of âˆ¼ 4-5 log-fold in bacterial load, primarily in the kidney, liver and spleen of septicemia mice. IsPPEF.3HCl-NS prepared by the In-situ approach, coupled with enhanced intramacrophage delivery and superior efficacy, positions IsPPEF.3HCl-NS as a pioneering and highly promising formulation in the battle against antimicrobial resistance.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Sepsis , Staphylococcal Infections , Humans , Animals , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Staphylococcus aureus , Sepsis/drug therapy , Staphylococcal Infections/drug therapy , Microbial Sensitivity Tests
2.
Int J Pharm ; 635: 122729, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36803923

ABSTRACT

In this study we present pH-responsive rifampicin (RIF) microparticles comprising lecithin and a biodegradable hydrophobic polymer, polyethylene sebacate (PES), to achieve high intramacrophage delivery and enhanced antitubercular efficacy. PES and PES-lecithin combination microparticles (PL MPs) prepared by single step precipitation revealed average size of 1.5 to 2.7 µm, entrapment efficiency âˆ¼ 60 %, drug loading 12-15 % and negative zeta potential. Increase in lecithin concentration enhanced hydrophilicity. PES MPs demonstrated faster release in simulated lung fluid pH 7.4, while lecithin MPs facilitated faster and concentration dependent release in acidic artificial lysosomal fluid (ALF) pH 4.5 due to swelling and destabilization confirmed by TEM. PES and PL (1:2) MPs exhibited comparable macrophage uptake which was âˆ¼ 5-fold superior than free RIF, in the RAW 264.7 macrophage cells. Confocal microscopy depicted intensified accumulation of the MPs in the lysosomal compartment, with augmented release of coumarin dye from the PL MPs, confirming pH-triggered increased intracellular release. Although, PES MPs and PL (1:2) MPs displayed comparable and high macrophage uptake, antitubercular efficacy against macrophage internalised M. tuberculosis was significantly higher with PL (1:2) MPs. This suggested great promise of the pH-sensitive PL (1:2) MPs for enhanced antitubercular efficacy.


Subject(s)
Lecithins , Rifampin , Rifampin/pharmacology , Rifampin/chemistry , Particle Size , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Polymers , Hydrogen-Ion Concentration , Drug Carriers/chemistry
3.
Eur J Pharmacol ; 891: 173748, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33227285

ABSTRACT

The global pandemic of Coronavirus Disease 2019 (COVID-19) has brought the world to a grinding halt. A major cause of concern is the respiratory distress associated mortality attributed to the cytokine storm. Despite myriad rapidly approved clinical trials with repurposed drugs, and time needed to develop a vaccine, accelerated search for repurposed therapeutics is still ongoing. In this review, we present Nitazoxanide a US-FDA approved antiprotozoal drug, as one such promising candidate. Nitazoxanide which is reported to exert broad-spectrum antiviral activity against various viral infections, revealed good in vitro activity against SARS-CoV-2 in cell culture assays, suggesting potential for repurposing in COVID-19. Furthermore, nitazoxanide displays the potential to boost host innate immune responses and thereby tackle the life-threatening cytokine storm. Possibilities of improving lung, as well as multiple organ damage and providing value addition to COVID-19 patients with comorbidities, are other important facets of the drug. The review juxtaposes the role of nitazoxanide in fighting COVID-19 pathogenesis at multiple levels highlighting the great promise the drug exhibits. The in silico data and in vitro efficacy in cell lines confirms the promise of nitazoxanide. Several approved clinical trials world over further substantiate leveraging nitazoxanide for COVID-19 therapy.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Drug Repositioning , SARS-CoV-2 , Thiazoles/pharmacology , Antiprotozoal Agents/pharmacology , COVID-19/immunology , Clinical Trials as Topic , Humans , Immunity, Innate/drug effects , Nitro Compounds , SARS-CoV-2/drug effects , SARS-CoV-2/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...