Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Pathol ; : 1926233241259998, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38907685

ABSTRACT

We previously developed a computer-assisted image analysis algorithm to detect and quantify the microscopic features of rodent progressive cardiomyopathy (PCM) in rat heart histologic sections and validated the results with a panel of five veterinary toxicologic pathologists using a multinomial logistic model. In this study, we assessed both the inter-rater and intra-rater agreement of the pathologists and compared pathologists' ratings to the artificial intelligence (AI)-predicted scores. Pathologists and the AI algorithm were presented with 500 slides of rodent heart. They quantified the amount of cardiomyopathy in each slide. A total of 200 of these slides were novel to this study, whereas 100 slides were intentionally selected for repetition from the previous study. After a washout period of more than six months, the repeated slides were examined to assess intra-rater agreement among pathologists. We found the intra-rater agreement to be substantial, with weighted Cohen's kappa values ranging from k = 0.64 to 0.80. Intra-rater variability is not a concern for the deterministic AI. The inter-rater agreement across pathologists was moderate (Cohen's kappa k = 0.56). These results demonstrate the utility of AI algorithms as a tool for pathologists to increase sensitivity and specificity for the histopathologic assessment of the heart in toxicology studies.

2.
Toxicol Pathol ; 49(4): 888-896, 2021 06.
Article in English | MEDLINE | ID: mdl-33287662

ABSTRACT

Rodent progressive cardiomyopathy (PCM) encompasses a constellation of microscopic findings commonly seen as a spontaneous background change in rat and mouse hearts. Primary histologic features of PCM include varying degrees of cardiomyocyte degeneration/necrosis, mononuclear cell infiltration, and fibrosis. Mineralization can also occur. Cardiotoxicity may increase the incidence and severity of PCM, and toxicity-related morphologic changes can overlap with those of PCM. Consequently, sensitive and consistent detection and quantification of PCM features are needed to help differentiate spontaneous from test article-related findings. To address this, we developed a computer-assisted image analysis algorithm, facilitated by a fully convolutional network deep learning technique, to detect and quantify the microscopic features of PCM (degeneration/necrosis, fibrosis, mononuclear cell infiltration, mineralization) in rat heart histologic sections. The trained algorithm achieved high values for accuracy, intersection over union, and dice coefficient for each feature. Further, there was a strong positive correlation between the percentage area of the heart predicted to have PCM lesions by the algorithm and the median severity grade assigned by a panel of veterinary toxicologic pathologists following light microscopic evaluation. By providing objective and sensitive quantification of the microscopic features of PCM, deep learning algorithms could assist pathologists in discerning cardiotoxicity-associated changes.


Subject(s)
Artificial Intelligence , Cardiomyopathies , Algorithms , Animals , Cardiomyopathies/chemically induced , Mice , Neural Networks, Computer , Rats , Rodentia
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 1380-1383, 2020 07.
Article in English | MEDLINE | ID: mdl-33018246

ABSTRACT

Gleason scoring for prostate cancer grading is a subjective examination and suffers from suboptimal interobserver and intraobserver variability. To overcome these limitations, we have developed an automated system to grade prostate biopsies. We present a novel deep learning architecture Carcino-Net, which improves semantic segmentation performance. The proposed network is a modified FCN8s with ResNet50 backbone. Using Carcino-Net, we not only report best performance in separating the different grades, we also offer greater accuracy over other state-of-the-art frameworks. The proposed system could expedite the pathology workflow in diagnostic laboratories by triaging high-grade biopsies.Clinical relevance- Carcinoma of the prostate is the second most common cancer diagnosed in men, with approximately one in nine men diagnosed in their lifetime. The tumor staging via Gleason score is the most powerful prognostic predictor for prostate cancer patients.


Subject(s)
Deep Learning , Biopsy , Humans , Male , Neoplasm Grading , Reproducibility of Results
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 1396-1399, 2020 07.
Article in English | MEDLINE | ID: mdl-33018250

ABSTRACT

Accurate detection of macro and microvesicles in rat models of fatty liver disease is crucial in evaluating the progression of liver disease and identifying potential hepatotoxic findings during drug development. In this paper, we present a deep-learning-based framework for the segmentation of vacuoles in liver images of Wistar rat and study the correlation of automated quantification with expert pathologist's manual evaluation. To address the issue of misclassification of lumina (vascular and bile duct) as large vacuoles, we propose a selective tiling technique to generate tiles that include complete lumina and large vacuoles. A binary encoder-decoder convolution neural network is trained to detect individual vacuoles. We report a sensitivity of 85% and specificity of 98%. Furthermore, the diameter and roundness of the segmented vacuoles are estimated with an error of less than 8%, which supports the high potential of our method in drug development process.


Subject(s)
Liver , Vacuoles , Animals , Liver/diagnostic imaging , Neural Networks, Computer , Rats , Rats, Wistar , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...