Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 273(Pt 1): 133042, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38866277

ABSTRACT

Developing biobased flame retardant adhesives using a green and simple strategy has recently gained significant attention. Therefore, in this study, we have orange peel waste (OPW) and Acacia gum (AG) phosphorylated at 140 °C to synthesize biomass-derived flame retardant adhesive. OPW is a biomass material readily available in large quantities, which. Has been utilized to produce an eco-friendly, efficient adhesive. Functionalized polysaccharides were used as a binder rather than volatile, poisonous, and unsustainable petroleum-based aldehydes. The P@OPW/AG green adhesive exhibited a higher tensile strength of 11.25 MPa when applied to cotton cloth and demonstrated versatility across various substrates such as glass, cardboard, plastic, wood, and textiles. Additionally, this bio-based robust adhesive displayed remarkable flame-retardant properties. To optimize its flame retardancy, three tests were employed: the spirit lamp flame test, the vertical flammability test (VFT), and the limiting oxygen index (LOI) test. The P@OPW/AG-coated cotton fabric achieved an impressive LOI result of 42 %, while the VFT yielded a char length of only 4 cm. Additionally, during the flame test, P@OPW/AG coated cloth endured more than 845 s of continuous flame illumination. This work offers a sustainable and fire-safe method for creating environmentally friendly high-performance composites using a recyclable bio-based flame-retardant OPW/AG glue.


Subject(s)
Adhesives , Flame Retardants , Flame Retardants/analysis , Adhesives/chemistry , Tensile Strength , Gum Arabic/chemistry , Textiles , Biomass , Citrus sinensis/chemistry , Wood/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...