Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Circ Res ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38939925

ABSTRACT

BACKGROUND: Thoracic epidural anesthesia (TEA) has been shown to reduce the burden of ventricular tachycardia in small case series of patients with refractory ventricular tachycardia and cardiomyopathy. However, its electrophysiological and autonomic effects in diseased hearts remain unclear, and its use after myocardial infarction is limited by concerns for potential right ventricular dysfunction. METHODS: Myocardial infarction was created in Yorkshire pigs (N=22) by left anterior descending coronary artery occlusion. Six weeks after myocardial infarction, an epidural catheter was placed at the C7-T1 vertebral level for injection of 2% lidocaine. Right and left ventricular hemodynamics were recorded using Millar pressure-conductance catheters, and ventricular activation recovery intervals (ARIs), a surrogate of action potential durations, by a 56-electrode sock and 64-electrode basket catheter. Hemodynamics and ARIs, baroreflex sensitivity and intrinsic cardiac neural activity, and ventricular effective refractory periods and slope of restitution (Smax) were assessed before and after TEA. Ventricular tachyarrhythmia inducibility was assessed by programmed electrical stimulation. RESULTS: TEA reduced inducibility of ventricular tachyarrhythmias by 70%. TEA did not affect right ventricular-systolic pressure or contractility although left ventricular-systolic pressure and contractility decreased modestly. Global and regional ventricular ARIs increased, including in scar and border zone regions post-TEA. TEA reduced ARI dispersion specifically in border zone regions. Ventricular effective refractory periods prolonged significantly at critical sites of arrhythmogenesis, and Smax was reduced. Interestingly, TEA significantly improved cardiac vagal function, as measured by both baroreflex sensitivity and intrinsic cardiac neural activity. CONCLUSIONS: TEA does not compromise right ventricular function in infarcted hearts. Its antiarrhythmic mechanisms are mediated by increases in ventricular effective refractory period and ARIs, decreases in Smax, and reductions in border zone electrophysiological heterogeneities. TEA improves parasympathetic function, which may independently underlie some of its observed antiarrhythmic mechanisms. This study provides novel insights into the antiarrhythmic mechanisms of TEA while highlighting its applicability to the clinical setting.

2.
bioRxiv ; 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38559001

ABSTRACT

Background: Thoracic epidural anesthesia (TEA) has been shown to reduce the burden of ventricular tachyarrhythmias (VT) in small case-series of patients with refractory VT and cardiomyopathy. However, its electrophysiological and autonomic effects in diseased hearts remain unclear and its use after myocardial infarction (MI) is limited by concerns for potential RV dysfunction. Methods: MI was created in Yorkshire pigs ( N =22) by LAD occlusion. Six weeks post-MI, an epidural catheter was placed at the C7-T1 vertebral level for injection of 2% lidocaine. RV and LV hemodynamics were recorded using Millar pressure-conductance catheters, and ventricular activation-recovery intervals (ARIs), a surrogate of action potential durations, by a 56-electrode sock and 64-electrode basket catheter. Hemodynamics and ARIs, baroreflex sensitivity (BRS) and intrinsic cardiac neural activity, and ventricular effective refractory periods (ERP) and slope of restitution (S max ) were assessed before and after TEA. VT/VF inducibility was assessed by programmed electrical stimulation. Results: TEA reduced inducibility of VT/VF by 70%. TEA did not affect RV-systolic pressure or contractility, although LV-systolic pressure and contractility decreased modestly. Global and regional ventricular ARIs increased, including in scar and border zone regions post-TEA. TEA reduced ARI dispersion specifically in border zone regions. Ventricular ERPs prolonged significantly at critical sites of arrhythmogenesis, and S max was reduced. Interestingly, TEA significantly improved cardiac vagal function, as measured by both BRS and intrinsic cardiac neural activity. Conclusion: TEA does not compromise RV function in infarcted hearts. Its anti-arrhythmic mechanisms are mediated by increases in ventricular ERP and ARIs, decreases in S max , and reductions in border zone heterogeneity. TEA improves parasympathetic function, which may independently underlie some of its observed anti-arrhythmic mechanisms. This study provides novel insights into the anti-arrhythmic mechanisms of TEA, while highlighting its applicability to the clinical setting. Abstract Illustration: Myocardial infarction is known to cause cardiac autonomic dysfunction characterized by sympathoexcitation coupled with reduced vagal tone. This pathological remodeling collectively predisposes to ventricular arrhythmia. Thoracic epidural anesthesia not only blocks central efferent sympathetic outflow, but by also blocking ascending projections of sympathetic afferents, relieving central inhibition of vagal function. These complementary autonomic effects of thoracic epidural anesthesia may thus restore autonomic balance, thereby improving ventricular electrical stability and suppressing arrhythmogenesis. DRG=dorsal root ganglion, SG=stellate ganglion.

3.
JCI Insight ; 7(4)2022 02 22.
Article in English | MEDLINE | ID: mdl-35015733

ABSTRACT

Myocardial infarction causes pathological changes in the autonomic nervous system, which exacerbate heart failure and predispose to fatal ventricular arrhythmias and sudden death. These changes are characterized by sympathetic activation and parasympathetic dysfunction (reduced vagal tone). Reasons for the central vagal withdrawal and, specifically, whether myocardial infarction causes changes in cardiac vagal afferent neurotransmission that then affect efferent tone, remain unknown. The objective of this study was to evaluate whether myocardial infarction causes changes in vagal neuronal afferent signaling. Using in vivo neural recordings from the inferior vagal (nodose) ganglia and immunohistochemical analyses, structural and functional alterations in vagal sensory neurons were characterized in a chronic porcine infarct model and compared with normal animals. Myocardial infarction caused an increase in the number of nociceptive neurons but a paradoxical decrease in functional nociceptive signaling. No changes in mechanosensitive neurons were observed. Notably, nociceptive neurons demonstrated an increase in GABAergic expression. Given that nociceptive signaling through the vagal ganglia increases efferent vagal tone, the results of this study suggest that a decrease in functional nociception, possibly due to an increase in expression of inhibitory neurotransmitters, may contribute to vagal withdrawal after myocardial infarction.


Subject(s)
Heart/innervation , Myocardial Infarction/physiopathology , Neurons/metabolism , Nociception/physiology , Nodose Ganglion/physiopathology , Synaptic Transmission/physiology , Vagus Nerve/physiopathology , Animals , Disease Models, Animal , Female , Heart Rate/physiology , Male , Swine
4.
Life Sci ; 231: 116571, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31207308

ABSTRACT

AIMS: The role of long non-coding RNA's (lncRNA) in the biology of ulcerative colitis (UC) is not well understood. We have previously detected changes in lncRNA's associated with UC. This study aims to characterize one specific lncRNA, CDKN2B-AS1 whose expression was downregulated in UC patients. MAIN METHODS: UC biopsies were used to determine the levels of linear and circular CDKN2B-AS1 relative to healthy controls. In situ hybridization was used to determine the localization of CKDN2B-AS1 in the colon. The intestinal epithelial cell line, Caco-2, was used to study the effects of shRNA mediated loss of CDKN2B-AS1. Transepithelial electrical resistance was used to measure barrier function. An RT-PCR array, immunoblots and immunohistochemistry were used to determine tight junction proteins that CDKN2B-AS1 regulates. KEY FINDINGS: CDKN2B-AS1 is transcribed into not only linear transcripts but also as circular RNA through back-splicing and both forms are decreased in IBD. CDKN2B-AS1 is expressed mainly in colonic epithelial cells. Cells with down-regulated CDKN2B-AS1 exhibited increased proliferation and no alterations in apoptosis. Targeting both the linear and circular transcripts of CDKN2B-AS1 with short hairpin RNAs enhanced barrier function. We subsequently determined that Claudin-2, a "leaky Claudin" known to decrease barrier function, was decreased in CDKN2B-AS1 knockdown cells. SIGNIFICANCE: This study identifies a novel lncRNA with both linear and circular transcripts affecting UC biology.


Subject(s)
Inflammatory Bowel Diseases/genetics , RNA, Long Noncoding/biosynthesis , RNA, Long Noncoding/genetics , Adult , Apoptosis/genetics , Caco-2 Cells , Cell Proliferation/genetics , Claudin-2/genetics , Claudin-2/metabolism , Colitis, Ulcerative/genetics , Colitis, Ulcerative/metabolism , Cyclin-Dependent Kinase Inhibitor p15/biosynthesis , Cyclin-Dependent Kinase Inhibitor p15/genetics , Cyclin-Dependent Kinase Inhibitor p15/metabolism , DNA, Circular/genetics , Epithelial Cells/metabolism , Female , Humans , Inflammatory Bowel Diseases/pathology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Male , RNA/genetics , RNA, Circular , RNA, Long Noncoding/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...