Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Infect Dis ; 143: 107014, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38499058

ABSTRACT

Tropical infectious diseases inflict an unacceptable burden of disease on humans living in developing countries. Although anti-pathogenic drugs have been widely used, they carry a constant threat of selecting for resistance. Vaccines offer a promising means by which to enhance the global control of tropical infectious diseases; however, these have been difficult to develop, mostly because of the complex nature of the pathogen lifecycles. Here, we present recently developed vaccine candidates for five tropical infectious diseases in the form of a catalog that have either entered clinical trials or have been licensed for use. We deliberate on recently licensed dengue vaccines, provide evidence why combination vaccination could have a synergistic impact on schistosomiasis, critically appraise the value of typhoid conjugate vaccines, and discuss the potential of vaccines in the efforts to eliminate vivax malaria and hookworms.


Subject(s)
Dengue , Humans , Dengue/prevention & control , Dengue Vaccines/immunology , Dengue Vaccines/administration & dosage , Schistosomiasis/prevention & control , Communicable Diseases , Tropical Medicine , Vaccines/immunology , Typhoid Fever/prevention & control , Malaria, Vivax/prevention & control , Vaccine Development
2.
Malar J ; 20(1): 219, 2021 May 14.
Article in English | MEDLINE | ID: mdl-33990197

ABSTRACT

BACKGROUND: Insecticide-treated bed nets (ITNs) are widely used for the prevention and control of malaria. In Guatemala, since 2006, ITNs have been distributed free of charge in the highest risk malaria-endemic areas and constitute one of the primary vector control measures in the country. Despite relying on ITNs for almost 15 years, there is a lack of data to inform the timely replacement of ITNs whose effectiveness becomes diminished by routine use. METHODS: The survivorship, physical integrity, insecticide content and bio-efficacy of ITNs were assessed through cross-sectional surveys conducted at 18, 24 and 32 months after a 2012 distribution of PermaNet® 2.0 in a malaria focus in Guatemala. A working definition of 'LLIN providing adequate protection' was developed based on the combination of the previous parameters and usage of the net. A total of 988 ITNs were analysed (290 at 18 months, 349 at 24 months and 349 at 32 months). RESULTS: The functional survivorship of bed nets decreased over time, from 92% at 18 months, to 81% at 24 months and 69% at 32 months. Independent of the time of the survey, less than 80% of the bed nets that were still present in the household were reported to have been used the night before. The proportion of bed nets categorized as "in good condition" per World Health Organization (WHO) guidelines of the total hole surface area, diminished from 77% to 18 months to 58% at 32 months. The portion of ITNs with deltamethrin concentration less than 10 mg/m2 increased over time. Among the bed nets for which bioassays were conducted, the percentage that met WHO criteria for efficacy dropped from 90% to 18 months to 52% at 32 months. The proportion of long-lasting insecticidal nets (LLINs) providing adequate protection was 38% at 24 months and 21% at 32 months. CONCLUSIONS: At 32 months, only one in five of the LLINs distributed in the campaign provided adequate protection in terms of survivorship, physical integrity, bio-efficacy and usage. Efforts to encourage the community to retain, use, and properly care for the LLINs may improve their impact. Durability assessments should be included in future campaigns.


Subject(s)
Insecticide-Treated Bednets/statistics & numerical data , Malaria/prevention & control , Mosquito Control/statistics & numerical data , Cross-Sectional Studies , Guatemala
SELECTION OF CITATIONS
SEARCH DETAIL
...