Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Nat Ecol Evol ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858512

ABSTRACT

Personal names are a universal feature of human language, yet few analogues exist in other species. While dolphins and parrots address conspecifics by imitating the calls of the addressee, human names are not imitations of the sounds typically made by the named individual. Labelling objects or individuals without relying on imitation of the sounds made by the referent radically expands the expressive power of language. Thus, if non-imitative name analogues were found in other species, this could have important implications for our understanding of language evolution. Here we present evidence that wild African elephants address one another with individually specific calls, probably without relying on imitation of the receiver. We used machine learning to demonstrate that the receiver of a call could be predicted from the call's acoustic structure, regardless of how similar the call was to the receiver's vocalizations. Moreover, elephants differentially responded to playbacks of calls originally addressed to them relative to calls addressed to a different individual. Our findings offer evidence for individual addressing of conspecifics in elephants. They further suggest that, unlike other non-human animals, elephants probably do not rely on imitation of the receiver's calls to address one another.

2.
Proc Biol Sci ; 288(1953): 20210774, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34187196

ABSTRACT

African elephants (Loxodonta africana) use many sensory modes to gather information about their environment, including the detection of seismic, or ground-based, vibrations. Seismic information is known to include elephant-generated signals, but also potentially encompasses biotic cues that are commonly referred to as 'noise'. To investigate seismic information transfer in elephants beyond communication, here we tested the hypothesis that wild elephants detect and discriminate between seismic vibrations that differ in their noise types, whether elephant- or human-generated. We played three types of seismic vibrations to elephants: seismic recordings of elephants (elephant-generated), white noise (human-generated) and a combined track (elephant- and human-generated). We found evidence of both detection of seismic noise and discrimination between the two treatments containing human-generated noise. In particular, we found evidence of retreat behaviour, where seismic tracks with human-generated noise caused elephants to move further away from the trial location. We conclude that seismic noise are cues that contain biologically relevant information for elephants that they can associate with risk. This expands our understanding of how elephants use seismic information, with implications for elephant sensory ecology and conservation management.


Subject(s)
Elephants , Animals , Avoidance Learning , Cues , Humans , Noise , Vibration
SELECTION OF CITATIONS
SEARCH DETAIL
...