Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
Mini Rev Med Chem ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38859778

ABSTRACT

Cancer remains a primary cause of death globally, and effective treatments are still limited. While chemotherapy has notably enhanced survival rates, it brings about numerous side effects. Consequently, the ongoing challenge persists in developing potent anti-cancer agents with minimal toxicity. The versatile nature of the quinazoline moiety has positioned it as a pivotal component in the development of various antitumor agents, showcasing its promising role in innovative cancer therapeutics. This concise review aims to reveal the potential of quinazolines in creating anticancer medications that target histone deacetylases (HDACs).

2.
Acta Crystallogr D Struct Biol ; 80(Pt 6): 386-396, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38805244

ABSTRACT

Over the years, human dihydroorotate dehydrogenase (hDHODH), which is a key player in the de novo pyrimidine-biosynthesis pathway, has been targeted in the treatment of several conditions, including autoimmune disorders and acute myelogenous leukaemia, as well as in host-targeted antiviral therapy. A molecular exploration of its inhibitor-binding behaviours yielded promising candidates for innovative drug design. A detailed description of the enzymatic pharmacophore drove the decoration of well-established inhibitory scaffolds, thus gaining further in vitro and in vivo efficacy. In the present work, using X-ray crystallography, an atypical rearrangement was identified in the binding pose of a potent inhibitor characterized by a polar pyridine-based moiety (compound 18). The crystal structure shows that upon binding compound 18 the dynamics of a protein loop involved in a gating mechanism at the cofactor-binding site is modulated by the presence of three water molecules, thus fine-tuning the polarity/hydrophobicity of the binding pocket. These solvent molecules are engaged in the formation of a hydrogen-bond mesh in which one of them establishes a direct contact with the pyridine moiety of compound 18, thus paving the way for a reappraisal of the inhibition of hDHODH. Using an integrated approach, the thermodynamics of such a modulation is described by means of isothermal titration calorimetry coupled with molecular modelling. These structural insights will guide future drug design to obtain a finer Kd/logD7.4 balance and identify membrane-permeable molecules with a drug-like profile in terms of water solubility.


Subject(s)
Dihydroorotate Dehydrogenase , Oxidoreductases Acting on CH-CH Group Donors , Humans , Oxidoreductases Acting on CH-CH Group Donors/chemistry , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Crystallography, X-Ray/methods , Binding Sites , Pyridines/chemistry , Pyridines/pharmacology , Protein Conformation , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Models, Molecular , Protein Binding , Hydrogen Bonding
3.
J Mass Spectrom ; 59(6): e5043, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38789127

ABSTRACT

The assignment of structure by tandem mass spectrometry (MS/MS) relies on the interpretation of the fragmentation behavior of gas-phase ions. Mass spectra were acquired for a series of heterocyclic mimetics of acidic amino acids and a related series of nitrile amino acids. All amino acids were readily protonated or deprotonated by electrospray ionization (ESI), and distinctive fragmentation processes were observed when the ions were subjected to collision-induced dissociation (CID). The deprotonated heterocycles showed bond cleavages of the 3-hydroxyfurazan ring with formation of oxoisocyanate and the complementary deprotonated nitrile amino acid. Further fragmentation of the deprotonated nitrile amino acids was greatly dependent on the length of the alkyl nitrile side chain. Competing losses of CO2 versus HCN occurred from α-cyanoglycinate (shortest chain), whereas water was lost from 2-amino-5-cyanopentanoate (longest chain). Interestingly, loss of acrylonitrile by a McLafferty-type fragmentation process was detected for 2-amino-4-cyanobutanoate, and several competing processes were observed for ß-cyanoalanate. In one process, cyanide ion was formed either by consecutive losses of ammonia, carbon dioxide, and acetylene or by a one-step decarboxylative elimination. In another, complementary ions were obtained from ß-cyanoalanate by loss of acetonitrile or HN=CHCO2H. Fragmentation of the protonated 3-hydroxyfurazan and nitrile amino acids resulted in the cumulative loss (H2O + CO), a loss that is commonly observed for protonated aliphatic α-amino acids. Overall, the distinct fragmentation behavior of the multifunctional 3-hydroxyfurazan amino acids correlated with the charged site, whereas fragmentations of the deprotonated nitrile amino acids showed cooperative interactions between the nitrile and the carboxylate groups.


Subject(s)
Amino Acids , Nitriles , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Nitriles/chemistry , Amino Acids/chemistry , Amino Acids/analysis , Spectrometry, Mass, Electrospray Ionization/methods , Ions/chemistry
4.
Bioorg Chem ; 146: 107249, 2024 May.
Article in English | MEDLINE | ID: mdl-38493638

ABSTRACT

One of the deadliest infectious diseases, malaria, still has a significant impact on global morbidity and mortality. Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) catalyzes the fourth step in de novo pyrimidine nucleotide biosynthesis and has been clinically validated as an innovative and promising target for the development of novel targeted antimalarial drugs. PfDHODH inhibitors have the potential to significantly slow down parasite growth at the blood and liver stages. Several PfDHODH inhibitors based on various scaffolds have been explored over the past two decades. Among them, triazolopyrimidines, isoxazolopyrimidines, and pyrrole-based derivatives known as DSM compounds showed tremendous potential as novel antimalarial agents, and one of the triazolopyrimidine-based compounds (DSM265) was able to reach phase IIa clinical trials. DSM compounds were synthesized as PfDHODH inhibitors with various substitutions based on structure-guided medicinal chemistry approaches and further optimised as well. For the first time, this review provides an overview of all the synthetic approaches used for the synthesis, alternative synthetic routes, and novel strategies involving various catalysts and chemical reagents that have been used to synthesize DSM compounds. We have also summarized SAR study of all these PfDHODH inhibitors. In an attempt to assist readers, scientists, and researchers involved in the development of new PfDHODH inhibitors as antimalarials, this review provides accessibility of all synthetic techniques and SAR studies of the most promising triazolopyrimidines, isoxazolopyrimidines, and pyrrole-based PfDHODH inhibitors.


Subject(s)
Antimalarials , Oxidoreductases Acting on CH-CH Group Donors , Antimalarials/chemistry , Plasmodium falciparum , Oxidoreductases Acting on CH-CH Group Donors/chemistry , Pyrroles/pharmacology , Dihydroorotate Dehydrogenase , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry
5.
Eur J Med Chem ; 268: 116193, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38364714

ABSTRACT

AKR1C3 is an enzyme that is overexpressed in several types of radiotherapy- and chemotherapy-resistant cancers. Despite AKR1C3 is a validated target for drug development, no inhibitor has been approved for clinical use. In this manuscript, we describe our study of a new series of potent AKR1C3-targeting 3-hydroxybenzoisoxazole based inhibitors that display high selectivity over the AKR1C2 isoform and low micromolar activity in inhibiting 22Rv1 prostate cancer cell proliferation. In silico studies suggested proper substituents to increase compound potency and provided with a mechanistic explanation that could clarify their different activity, later confirmed by X-ray crystallography. Both the in-silico studies and the crystallographic data highlight the importance of 90° rotation around the single bond of the biphenyl group, in ensuring that the inhibitor can adopt the optimal binding mode within the active pocket. The p-biphenyls that bear the meta-methoxy, and the ortho- and meta-trifluoromethyl substituents (in compounds 6a, 6e and 6f respectively) proved to be the best contributors to cellular potency as they provided the best IC50 values in series (2.3, 2.0 and 2.4 µM respectively) and showed no toxicity towards human MRC-5 cells. Co-treatment with scalar dilutions of either compound 6 or 6e and the clinically used drug abiraterone led to a significant reduction in cell proliferation, and thus confirmed that treatment with both CYP171A1-and AKR1C3-targeting compounds possess the potential to intervene in key steps in the steroidogenic pathway. Taken together, the novel compounds display desirable biochemical potency and cellular target inhibition as well as good in-vitro ADME properties, which highlight their potential for further preclinical studies.


Subject(s)
Prostatic Neoplasms , Male , Humans , Aldo-Keto Reductase Family 1 Member C3 , Prostatic Neoplasms/drug therapy , 3-Hydroxysteroid Dehydrogenases/metabolism , Hydroxyprostaglandin Dehydrogenases/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry
6.
Eur J Mass Spectrom (Chichester) ; 30(1): 38-46, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37974410

ABSTRACT

Gas phase fragmentation reactions of monoprotonated 4-(3-aminopropyl)- and 4-(4-aminobutyl)-3-hydroxyfurazan were investigated to examine potential interactions between functional groups. The two heterocyclic alkyl amines were ionized by electrospray ionization (ESI, positive mode) and fragmented using tandem mass spectrometry (MS/MS). The fragmentation pathways were characterized using pseudo MS3 experiments, precursor-ion scans, and density functional computations. For both heterocyclic ions, loss of ammonia was the only fragmentation process observed at low collision energies. Computational analysis indicated that the most feasible mechanism was intramolecular nucleophilic displacement of ammonia from the protonated ω-aminoalkyl side chain by N5 of the furazan ring. The alkylated nitrogen in the resulting bicyclic product ion facilitated N-O bond cleavage; subsequent neutral losses of nitric oxide (NO) and carbon monoxide (CO) occurred by homolytic bond cleavages. Next in the multistep sequence, neutral loss of ethylene from a radical cation was observed. A less favorable, competing fragmentation pathway of protonated 4-(3-aminopropyl)-3-hydroxyfurazan was consistent with cleavage of the 3-hydroxyfurazan ring and losses of NO and CO. Overall, the similar fragmentation behavior found for protonated 4-(3-aminopropyl)- and 4-(4-aminobutyl)-3-hydroxyfurazan differed from that previously characterized for furazan analogs with shorter alkyl chains. These observations demonstrate that a small change in the structure of multifunctional, heterocyclic alkyl amines may significantly influence interactions between distinct functional groups and the nature of the fragmentation process.

7.
Antiviral Res ; 219: 105734, 2023 11.
Article in English | MEDLINE | ID: mdl-37852322

ABSTRACT

Human respiratory syncytial virus (RSV) is an important cause of acute lower respiratory infections, for which no effective drugs are currently available. The development of new effective anti-RSV agents is therefore an urgent priority, and Host-Targeting Antivirals (HTAs) can be considered to target RSV infections. As a contribution to this antiviral avenue, we have characterized the molecular mechanisms of the anti-RSV activity of MEDS433, a new inhibitor of human dihydroorotate dehydrogenase (hDHODH), a key cellular enzyme of de novo pyrimidine biosynthesis. MEDS433 was found to exert a potent antiviral activity against RSV-A and RSV-B in the one-digit nanomolar range. Analysis of the RSV replication cycle in MEDS433-treated cells, revealed that the hDHODH inhibitor suppressed the synthesis of viral genome, consistently with its ability to specifically target hDHODH enzymatic activity. Then, the capability of MEDS433 to induce the expression of antiviral proteins encoded by Interferon-Stimulated Genes (ISGs) was identified as a second mechanism of its antiviral activity against RSV. Indeed, MEDS433 stimulated secretion of IFN-ß and IFN-λ1 that, in turn, induced the expression of some ISG antiviral proteins, such as IFI6, IFITM1 and IRF7. Singly expression of these ISG proteins reduced RSV-A replication, thus likely contributing to the overall anti-RSV activity of MEDS433. Lastly, MEDS433 proved to be effective against RSV-A replication even in a primary human small airway epithelial cell model. Taken as a whole, these observations provide new insights for further development of MEDS433, as a promising candidate to develop new strategies for treatment of RSV infections.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Humans , Respiratory Syncytial Virus Infections/drug therapy , Interferons/pharmacology , Proteins , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Virus Replication
8.
Biomolecules ; 13(9)2023 09 05.
Article in English | MEDLINE | ID: mdl-37759751

ABSTRACT

This study reports on the synthesis and evaluation of novel compounds replacing the nitrogen-containing heterocyclic ring on the chemical backbone structure of cytochrome P450 17α-hydroxylase/12,20-lyase (CYP17A1) inhibitors with a phenyl bearing a sulfur-based substituent. Initial screening revealed compounds with marked inhibition of CYP17A1 activity. The selectivity of compounds was thereafter determined against cytochrome P450 21-hydroxylase, cytochrome P450 3A4, and cytochrome P450 oxidoreductase. Additionally, the compounds showed weak inhibitory activity against aldo-keto reductase 1C3 (AKR1C3). The compounds' impact on steroid hormone levels was also assessed, with some notable modulatory effects observed. This work paves the way for developing more potent dual inhibitors specifically targeting CYP17A1 and AKR1C3.


Subject(s)
Nitrogen , Sulfur , Secondary Metabolism
9.
FEBS Lett ; 597(16): 2119-2132, 2023 08.
Article in English | MEDLINE | ID: mdl-37278160

ABSTRACT

Mycobacterium tuberculosis (MTB) is the etiologic agent of tuberculosis (TB), an ancient disease which causes 1.5 million deaths worldwide. Dihydroorotate dehydrogenase (DHODH) is a key enzyme of the MTB de novo pyrimidine biosynthesis pathway, and it is essential for MTB growth in vitro, hence representing a promising drug target. We present: (i) the biochemical characterization of the full-length MTB DHODH, including the analysis of the kinetic parameters, and (ii) the previously unreleased crystal structure of the protein that allowed us to rationally screen our in-house chemical library and identify the first selective inhibitor of mycobacterial DHODH. The inhibitor has fluorescence properties, potentially instrumental to in cellulo imaging studies, and exhibits an IC50 value of 43 µm, paving the way to hit-to-lead process.


Subject(s)
Mycobacterium tuberculosis , Oxidoreductases Acting on CH-CH Group Donors , Tuberculosis , Humans , Dihydroorotate Dehydrogenase , Mycobacterium tuberculosis/metabolism , Oxidoreductases Acting on CH-CH Group Donors/chemistry , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Drug Delivery Systems , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry
10.
Eur J Med Chem ; 254: 115337, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37060756

ABSTRACT

Cancer is a leading cause of death worldwide and there are still limited options for cure. Chemotherapy is the most significant treatment for cancer which increased survival rates, despite this, it is associated with numerous side effects, as well as cancer relapsing due to drug resistance insurgence; consequently, it is still a challenging task to develop new potent and less toxic anti-cancer agents for patients' care. Phenothiazine moiety, which leads a class of well-known antipsychotic drugs, possesses a wide range of biological activities and has been also introduced in cancer chemotherapy. This review aims in disclosing the use of phenothiazines during the last five years for the development of different anti-cancer drug candidates. The design and the synthetic strategies adopted, the SAR investigations and the role of reviewed phenothiazine derivatives as anti-cancer agents and multi-drug resistance (MDR) reversals are here fully described and discussed.


Subject(s)
Antineoplastic Agents , Antipsychotic Agents , Humans , Phenothiazines/pharmacology , Phenothiazines/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Drug Resistance, Multiple
11.
Viruses ; 14(10)2022 10 17.
Article in English | MEDLINE | ID: mdl-36298835

ABSTRACT

The pharmacological management of influenza virus (IV) infections still poses a series of challenges due to the limited anti-IV drug arsenal. Therefore, the development of new anti-influenza agents effective against antigenically different IVs is therefore an urgent priority. To meet this need, host-targeting antivirals (HTAs) can be evaluated as an alternative or complementary approach to current direct-acting agents (DAAs) for the therapy of IV infections. As a contribution to this antiviral strategy, in this study, we characterized the anti-IV activity of MEDS433, a novel small molecule inhibitor of the human dihydroorotate dehydrogenase (hDHODH), a key cellular enzyme of the de novo pyrimidine biosynthesis pathway. MEDS433 exhibited a potent antiviral activity against IAV and IBV replication, which was reversed by the addition of exogenous uridine and cytidine or the hDHODH product orotate, thus indicating that MEDS433 targets notably hDHODH activity in IV-infected cells. When MEDS433 was used in combination either with dipyridamole (DPY), an inhibitor of the pyrimidine salvage pathway, or with an anti-IV DAA, such as N4-hydroxycytidine (NHC), synergistic anti-IV activities were observed. As a whole, these results indicate MEDS433 as a potential HTA candidate to develop novel anti-IV intervention approaches, either as a single agent or in combination regimens with DAAs.


Subject(s)
Influenza, Human , Orthomyxoviridae Infections , Humans , Antiviral Agents/pharmacology , Virus Replication , Pyrimidines/pharmacology , Enzyme Inhibitors/pharmacology , Uridine/pharmacology , Dihydroorotate Dehydrogenase , Dipyridamole/pharmacology , Cytidine/pharmacology
12.
J Med Chem ; 65(19): 12701-12724, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36162075

ABSTRACT

In recent years, human dihydroorotate dehydrogenase inhibitors have been associated with acute myelogenous leukemia as well as studied as potent host targeting antivirals. Starting from MEDS433 (IC50 1.2 nM), we kept improving the structure-activity relationship of this class of compounds characterized by 2-hydroxypyrazolo[1,5-a]pyridine scaffold. Using an in silico/crystallography supported design, we identified compound 4 (IC50 7.2 nM), characterized by the presence of a decorated aryloxyaryl moiety that replaced the biphenyl scaffold, with potent inhibition and pro-differentiating abilities on AML THP1 cells (EC50 74 nM), superior to those of brequinar (EC50 249 nM) and boosted when in combination with dipyridamole. Finally, compound 4 has an extremely low cytotoxicity on non-AML cells as well as MEDS433; it has shown a significant antileukemic activity in vivo in a xenograft mouse model of AML.


Subject(s)
Leukemia, Myeloid, Acute , Oxidoreductases Acting on CH-CH Group Donors , Animals , Humans , Mice , Antiviral Agents/pharmacology , Dihydroorotate Dehydrogenase , Dipyridamole/therapeutic use , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Pyridines/pharmacology , Pyridines/therapeutic use , Structure-Activity Relationship
13.
Molecules ; 27(12)2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35744791

ABSTRACT

Human dihydroorotate dehydrogenase (hDHODH) is an enzyme belonging to a flavin mononucleotide (FMN)-dependent family involved in de novo pyrimidine biosynthesis, a key biological pathway for highly proliferating cancer cells and pathogens. In fact, hDHODH proved to be a promising therapeutic target for the treatment of acute myelogenous leukemia, multiple myeloma, and viral and bacterial infections; therefore, the identification of novel hDHODH ligands represents a hot topic in medicinal chemistry. In this work, we reported a virtual screening study for the identification of new promising hDHODH inhibitors. A pharmacophore-based approach combined with a consensus docking analysis and molecular dynamics simulations was applied to screen a large database of commercial compounds. The whole virtual screening protocol allowed for the identification of a novel compound that is endowed with promising inhibitory activity against hDHODH and is structurally different from known ligands. These results validated the reliability of the in silico workflow and provided a valuable starting point for hit-to-lead and future lead optimization studies aimed at the development of new potent hDHODH inhibitors.


Subject(s)
Oxidoreductases Acting on CH-CH Group Donors , Dihydroorotate Dehydrogenase , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemistry , Humans , Ligands , Molecular Docking Simulation , Receptors, Drug , Reproducibility of Results
14.
Cell Death Dis ; 13(6): 576, 2022 06 30.
Article in English | MEDLINE | ID: mdl-35773274

ABSTRACT

The development of different generations of BCR-ABL1 tyrosine kinase inhibitors (TKIs) has led to the high overall survival of chronic myeloid leukemia (CML) patients. However, there are CML patients who show resistance to TKI therapy and are prone to progress to more advanced phases of the disease. So, implementing an alternative approach for targeting TKIs insensitive cells would be of the essence. Dihydroorotate dehydrogenase (DHODH) is an enzyme in the de novo pyrimidine biosynthesis pathway that is located in the inner membrane of mitochondria. Here, we found that CML cells are vulnerable to DHODH inhibition mediated by Meds433, a new and potent DHODH inhibitor recently developed by our group. Meds433 significantly activates the apoptotic pathway and leads to the reduction of amino acids and induction of huge metabolic stress in CML CD34+ cells. Altogether, our study shows that DHODH inhibition is a promising approach for targeting CML stem/progenitor cells and may help more patients discontinue the therapy.


Subject(s)
Dihydroorotate Dehydrogenase , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Drug Resistance, Neoplasm , Fusion Proteins, bcr-abl/metabolism , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Protein Kinase Inhibitors/pharmacology
15.
Eur J Med Chem ; 237: 114366, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35447434

ABSTRACT

The aldo-keto reductase 1C3 (AKR1C3) enzyme is considered an attractive target in Castration Resistant Prostate Cancer (CRPC) because of its role in the biosynthesis of androgens. Flufenamic acid, a non-selective AKR1C3 inhibitor, has previously been subjected to bioisosteric modulation to give rise to a series of compounds with the hydroxytriazole core. In this work, the hit compound of the previous series has been modulated further, and new, more potent, and selective derivatives have been obtained. The poor solubility of the most active compound (cpd 5) has been improved by substituting the triazole core with an isoxazole heteronucleous, with similar enzymatic activity being retained. Potent AKR1C3 inhibition is translated into antiproliferative effects against the 22RV1 CRPC cellular model, and the in-silico design, synthesis and biological activity of new compounds are described herein. Compounds have also been assayed in combination with two approved antitumor drugs, abiraterone and enzalutamide.


Subject(s)
Aldo-Keto Reductase Family 1 Member C3 , Antineoplastic Agents , Enzyme Inhibitors , Prostatic Neoplasms, Castration-Resistant , Aldo-Keto Reductase Family 1 Member C3/antagonists & inhibitors , Androgens , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Male , Prostatic Neoplasms, Castration-Resistant/drug therapy
16.
Microorganisms ; 9(8)2021 Aug 14.
Article in English | MEDLINE | ID: mdl-34442810

ABSTRACT

Although coronaviruses (CoVs) have long been predicted to cause zoonotic diseases and pandemics with high probability, the lack of effective anti-pan-CoVs drugs rapidly usable against the emerging SARS-CoV-2 actually prevented a promptly therapeutic intervention for COVID-19. Development of host-targeting antivirals could be an alternative strategy for the control of emerging CoVs infections, as they could be quickly repositioned from one pandemic event to another. To contribute to these pandemic preparedness efforts, here we report on the broad-spectrum CoVs antiviral activity of MEDS433, a new inhibitor of the human dihydroorotate dehydrogenase (hDHODH), a key cellular enzyme of the de novo pyrimidine biosynthesis pathway. MEDS433 inhibited the in vitro replication of hCoV-OC43 and hCoV-229E, as well as of SARS-CoV-2, at low nanomolar range. Notably, the anti-SARS-CoV-2 activity of MEDS433 against SARS-CoV-2 was also observed in kidney organoids generated from human embryonic stem cells. Then, the antiviral activity of MEDS433 was reversed by the addition of exogenous uridine or the product of hDHODH, the orotate, thus confirming hDHODH as the specific target of MEDS433 in hCoVs-infected cells. Taken together, these findings suggest MEDS433 as a potential candidate to develop novel drugs for COVID-19, as well as broad-spectrum antiviral agents exploitable for future CoVs threats.

17.
J Med Chem ; 64(9): 5404-5428, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33844533

ABSTRACT

The connection with acute myelogenous leukemia (AML) of dihydroorotate dehydrogenase (hDHODH), a key enzyme in pyrimidine biosynthesis, has attracted significant interest from pharma as a possible AML therapeutic target. We recently discovered compound 1, a potent hDHODH inhibitor (IC50 = 1.2 nM), able to induce myeloid differentiation in AML cell lines (THP1) in the low nM range (EC50 = 32.8 nM) superior to brequinar's phase I/II clinical trial (EC50 = 265 nM). Herein, we investigate the 1 drug-like properties observing good metabolic stability and no toxic profile when administered at doses of 10 and 25 mg/kg every 3 days for 5 weeks (Balb/c mice). Moreover, in order to identify a backup compound, we investigate the SAR of this class of compounds. Inside the series, 17 is characterized by higher potency in inducing myeloid differentiation (EC50 = 17.3 nM), strong proapoptotic properties (EC50 = 20.2 nM), and low cytotoxicity toward non-AML cells (EC30(Jurkat) > 100 µM).


Subject(s)
Biphenyl Compounds/chemistry , Enzyme Inhibitors/chemistry , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Pyrazoles/chemistry , Pyridines/chemistry , Animals , Apoptosis/drug effects , Binding Sites , Cell Differentiation/drug effects , Cell Line, Tumor , Dihydroorotate Dehydrogenase , Drug Design , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Female , Half-Life , Humans , Leukemia, Myeloid, Acute/drug therapy , Male , Mice , Mice, Inbred BALB C , Microsomes, Liver/metabolism , Molecular Docking Simulation , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Pyrazoles/metabolism , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Pyridines/metabolism , Pyridines/pharmacology , Pyridines/therapeutic use , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
18.
Antiviral Res ; 189: 105057, 2021 05.
Article in English | MEDLINE | ID: mdl-33716051

ABSTRACT

Emergence of drug resistance and adverse effects often affect the efficacy of nucleoside analogues in the therapy of Herpes simplex type 1 (HSV-1) and type 2 (HSV-2) infections. Host-targeting antivirals could therefore be considered as an alternative or complementary strategy in the management of HSV infections. To contribute to this advancement, here we report on the ability of a new generation inhibitor of a key cellular enzyme of de novo pyrimidine biosynthesis, the dihydroorotate dehydrogenase (DHODH), to inhibit HSV-1 and HSV-2 in vitro replication, with a potency comparable to that of the reference drug acyclovir. Analysis of the HSV replication cycle in MEDS433-treated cells revealed that it prevented the accumulation of viral genomes and reduced late gene expression, thus suggesting an impairment at a stage prior to viral DNA replication consistent with the ability of MEDS433 to inhibit DHODH activity. In fact, the anti-HSV activity of MEDS433 was abrogated by the addition of exogenous uridine or of the product of DHODH, the orotate, thus confirming DHODH as the MEDS433 specific target in HSV-infected cells. A combination of MEDS433 with dipyridamole (DPY), an inhibitor of the pyrimidine salvage pathway, was then observed to be effective in inhibiting HSV replication even in the presence of exogenous uridine, thus mimicking in vivo conditions. Finally, when combined with acyclovir and DPY in checkerboard experiments, MEDS433 exhibited highly synergistic antiviral activity. Taken together, these findings suggest that MEDS433 is a promising candidate as either single agent or in combination regimens with existing direct-acting anti-HSV drugs to develop new strategies for treatment of HSV infections.


Subject(s)
Antiviral Agents/pharmacology , Enzyme Inhibitors/pharmacology , Herpes Simplex/drug therapy , Herpesvirus 1, Human/drug effects , Herpesvirus 2, Human/drug effects , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Virus Replication/drug effects , Acyclovir/pharmacology , Animals , Cell Line, Tumor , Chlorocebus aethiops , DNA Replication/drug effects , DNA, Viral/biosynthesis , Dihydroorotate Dehydrogenase , Drug Synergism , Drug Therapy, Combination , Gene Expression Regulation, Viral/drug effects , Herpes Simplex/virology , Humans , Pyrimidines/biosynthesis , Vero Cells
19.
Cancers (Basel) ; 13(5)2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33670894

ABSTRACT

Dihydroorotate Dehydrogenase (DHODH) is a key enzyme of the de novo pyrimidine biosynthesis, whose inhibition can induce differentiation and apoptosis in acute myeloid leukemia (AML). DHODH inhibitors had shown promising in vitro and in vivo activity on solid tumors, but their effectiveness was not confirmed in clinical trials, probably because cancer cells exploited the pyrimidine salvage pathway to survive. Here, we investigated the antileukemic activity of MEDS433, the DHODH inhibitor developed by our group, against AML. Learning from previous failures, we mimicked human conditions (performing experiments in the presence of physiological uridine plasma levels) and looked for synergic combinations to boost apoptosis, including classical antileukemic drugs and dipyridamole, a blocker of the pyrimidine salvage pathway. MEDS433 induced apoptosis in multiple AML cell lines, not only as a consequence of differentiation, but also directly. Its combination with antileukemic agents further increased the apoptotic rate, but when experiments were performed in the presence of physiological uridine concentrations, results were less impressive. Conversely, the combination of MEDS433 with dipyridamole induced metabolic lethality and differentiation in all AML cell lines; this extraordinary synergism was confirmed on AML primary cells with different genetic backgrounds and was unaffected by physiological uridine concentrations, predicting in human activity.

20.
Brain Sci ; 12(1)2021 Dec 28.
Article in English | MEDLINE | ID: mdl-35053779

ABSTRACT

AIM: Nuclear factor kappa B (NF-κB) is known to play an important role in the inflammatory process which takes place after ischemic stroke. The major objective of the present study was to examine the effects of MEDS-23, a potent inhibitor of NF-κB, on clinical outcomes and brain inflammatory markers in post-ischemic stroke rats. MAIN METHODS: Initially, a Toxicity Experiment was performed to determine the appropriate dose of MEDS-23 for use in animals, as MEDS-23 was analyzed in vivo for the first time. We used the middle cerebral artery occlusion (MCAO) model for inducing ischemic stroke in rats. The effects of MEDS-23 (at 10 mg/kg, ip) on post-stroke outcomes (brain inflammation, fever, neurological deficits, mortality, and depression- and anxiety-like behaviours) was tested in several efficacy experiments. KEY FINDINGS: MEDS-23 was found to be safe and significantly reduced the severity of some adverse post-stroke outcomes such as fever and neurological deficits. Moreover, MEDS-23 significantly decreased prostaglandin E2 levels in the hypothalamus and hippocampus of post-stroke rats, but did not prominently alter the levels of interleukin-6 and tumor necrosis factor-α. SIGNIFICANCE: These results suggest that NF-κB inhibition is a potential therapeutic strategy for the treatment of ischemic stroke.

SELECTION OF CITATIONS
SEARCH DETAIL
...