Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Neurosci ; 20(19): 7384-93, 2000 Oct 01.
Article in English | MEDLINE | ID: mdl-11007897

ABSTRACT

Tumor necrosis factor receptor-associated factors (TRAFs) are adaptor proteins important in mediating intracellular signaling. We report here that targeted deletion of traf6 greatly increases the frequency of failure of neural tube closure and exencephaly in traf6 (-/-) mice. The penetrance of this defect is influenced by genetic background. Neural tube fusion requires the coordination of several biological processes, including cell migration invoked by contact-dependent signaling, cell proliferation, and programmed cell death (PCD). To gain greater insight into the role of TRAF6 in these processes, neural development and migration within the CNS of traf6 (-/-) mice and controls were assessed through temporal examination of a number of immunohistochemical markers. In addition, relative levels of cellular proliferation and PCD were examined throughout embryonic development using bromodeoxyuridine (BrdU) and in situ terminal deoxynucleotidyl transferase-mediated dUTP biotinylated nick end labeling (TUNEL), respectively. The data suggest that loss of TRAF6 does not significantly alter the level of cellular proliferation or the pattern of neural differentiation per se, but rather regulates the level of PCD within specific regions of the developing CNS. Substantial reductions in TUNEL were observed within the ventral diencephalon and mesencephalon in exencephalic traf6 (-/-) embryos. Our results demonstrate a novel and prominent role for TRAF6 in the regional control of PCD within the developing CNS.


Subject(s)
Neural Tube Defects/genetics , Proteins/genetics , Animals , Antigens, Differentiation/biosynthesis , Apoptosis/genetics , Bromodeoxyuridine , Cell Division/genetics , Cell Movement/genetics , Central Nervous System/metabolism , Central Nervous System/pathology , Genotype , Heterozygote , Homozygote , Immunohistochemistry , In Situ Nick-End Labeling , Inbreeding , Mice , Mice, Inbred ICR , Mice, Knockout , Neural Tube Defects/metabolism , Neural Tube Defects/pathology , Organ Specificity/genetics , Penetrance , Phenotype , Proteins/metabolism , Receptor, Nerve Growth Factor/metabolism , TNF Receptor-Associated Factor 6
2.
Genes Dev ; 13(8): 1015-24, 1999 Apr 15.
Article in English | MEDLINE | ID: mdl-10215628

ABSTRACT

Bone resorption and remodeling is an intricately controlled, physiological process that requires the function of osteoclasts. The processes governing both the differentiation and activation of osteoclasts involve signals induced by osteoprotegerin ligand (OPGL), a member of tumor necrosis factor (TNF) superfamily, and its cognate receptor RANK. The molecular mechanisms of the intracellular signal transduction remain to be elucidated. Here we report that mice deficient in TNF receptor-associated factor 6 (TRAF6) are osteopetrotic with defects in bone remodeling and tooth eruption due to impaired osteoclast function. Using in vitro assays, we demonstrate that TRAF6 is crucial not only in IL-1 and CD40 signaling but also, surprisingly, in LPS signaling. Furthermore, like TRAF2 and TRAF3, TRAF6 is essential for perinatal and postnatal survival. These findings establish unexpectedly diverse and critical roles for TRAF6 in perinatal and postnatal survival, bone metabolism, LPS, and cytokine signaling.


Subject(s)
CD40 Antigens/metabolism , Interleukin-1/metabolism , Lipopolysaccharides/metabolism , Mitogen-Activated Protein Kinases , Osteopetrosis/physiopathology , Proteins/physiology , Signal Transduction , Animals , B-Lymphocytes/metabolism , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Cell Division , Enzyme Activation , Female , JNK Mitogen-Activated Protein Kinases , Lipopolysaccharides/pharmacology , Macrophages/enzymology , Mice , Mice, Knockout , NF-kappa B/metabolism , Nitric Oxide Synthase/metabolism , Nitric Oxide Synthase Type II , Proteins/genetics , TNF Receptor-Associated Factor 6
SELECTION OF CITATIONS
SEARCH DETAIL
...