Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(1)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38203384

ABSTRACT

The North American low pathogenic H7N2 avian influenza A viruses, which lack the 220-loop in the hemagglutinin (HA), possess dual receptor specificity for avian- and human-like receptors. The purpose of this work was to determine which amino acid substitutions in HA affect viral antigenic and phenotypic properties that may be important for virus evolution. By obtaining escape mutants under the immune pressure of treatment with monoclonal antibodies, antigenically important amino acids were determined to be at positions 125, 135, 157, 160, 198, 200, and 275 (H3 numbering). These positions, except 125 and 275, surround the receptor binding site. The substitutions A135S and A135T led to the appearance of an N-glycosylation site at 133N, which reduced affinity for the avian-like receptor analog and weakened binding with tested monoclonal antibodies. Additionally, the A135S substitution is associated with the adaptation of avian viruses to mammals (cat, human, or mouse). The mutation A160V decreased virulence in mice and increased affinity for the human-type receptor analog. Conversely, substitution G198E, in combination with 157N or 160E, displayed reduced affinity for the human-type receptor analog.


Subject(s)
Hemagglutinins , Influenza, Human , Humans , Animals , Mice , Influenza A Virus, H7N2 Subtype , Antibodies, Monoclonal , North America , Mammals
2.
Virology ; 522: 37-45, 2018 09.
Article in English | MEDLINE | ID: mdl-30014856

ABSTRACT

Ducks, gulls and shorebirds represent the major hosts of influenza A viruses (IAVs) in nature, but distinctions of IAVs in different birds are not well defined. Here we characterized the receptor specificity of gull IAVs with HA subtypes H4, H6, H14, H13 and H16 using synthetic sialylglycopolymers. In contrast to duck IAVs, gull IAVs efficiently bound to fucosylated receptors and often preferred sulfated and non-sulfated receptors with Galß1-4GlcNAc cores over the counterparts with Galß1-3GlcNAc cores. Unlike all other IAVs of aquatic birds, H16 IAVs showed efficient binding to Neu5Acα2-6Gal-containing receptors and bound poorly to Neu5Acα2-3Galß1-3-terminated (duck-type) receptors. Analysis of HA crystal structures and amino acid sequences suggested that the amino acid at position 222 is an important determinant of the receptor specificity of IAVs and that transmission of duck viruses to gulls and shorebirds is commonly accompanied by substitutions at this position.


Subject(s)
Charadriiformes/virology , Influenza A virus/isolation & purification , Influenza A virus/physiology , Influenza in Birds/virology , Oligosaccharides/metabolism , Receptors, Virus/metabolism , Virus Attachment , Amino Acid Sequence , Animals , Binding Sites , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Models, Molecular , Oligosaccharides/chemistry , Protein Conformation , Receptors, Virus/chemistry
3.
J Gen Virol ; 97(1): 49-52, 2016 01.
Article in English | MEDLINE | ID: mdl-26487269

ABSTRACT

Swine vesicular disease virus (SVDV) emerged around 1960 from a human enterovirus ancestor, coxsackievirus B5 (CVB5), and caused a series of epizootics in Europe and Asia. We characterized a coxsackievirus B4 strain that caused an epizootic involving 24 488 pigs in the Soviet Union in 1975. Phylogenetic evidence suggested that the swine virus emerged from a human ancestor between 1945 and 1975, almost simultaneously with the transfer of CVB5.


Subject(s)
Coxsackievirus Infections/veterinary , Enterovirus B, Human/isolation & purification , Swine Diseases/epidemiology , Swine Diseases/virology , Animals , Cluster Analysis , Coxsackievirus Infections/epidemiology , Coxsackievirus Infections/history , Coxsackievirus Infections/virology , Enterovirus B, Human/classification , History, 20th Century , Molecular Sequence Data , Phylogeny , RNA, Viral/genetics , Sequence Analysis, DNA , Sequence Homology , Swine , Swine Diseases/history , USSR/epidemiology , Viral Structural Proteins/genetics
4.
Influenza Other Respir Viruses ; 6(3): 188-95, 2012 May.
Article in English | MEDLINE | ID: mdl-21951678

ABSTRACT

OBJECTIVE: Parallel testing of inactivated (split and whole virion) and live vaccine was conducted to compare the immunogenicity and protective efficacy against homologous and heterosubtypic challenge by H5N1 highly pathogenic avian influenza virus. METHOD: Four experimental live vaccines based on two H5N1 influenza virus strains were tested; two of them had hemagglutinin (HA) of A/Vietnam/1203/04 strain lacking the polybasic HA cleavage site, and two others had hemagglutinins from attenuated H5N1 virus A/Chicken/Kurgan/3/05, with amino acid substitutions of Asp54/Asn and Lys222/Thr in HA1 and Val48/Ile and Lys131/Thr in HA2 while maintaining the polybasic HA cleavage site. The neuraminidase and non-glycoprotein genes of the experimental live vaccines were from H2N2 cold-adapted master strain A/Leningrad/134/17/57 (VN-Len and Ku-Len) or from the apathogenic H6N2 virus A/Gull/Moscow/3100/2006 (VN-Gull and Ku-Gull). Inactivated H5N1 and H1N1 and live H1N1 vaccine were used for comparison. All vaccines were applied in a single dose. Safety, immunogenicity, and protectivity against the challenge with HPAI H5N1 virus A/Chicken/Kurgan/3/05 were estimated. RESULTS: All experimental live H5 vaccines tested were apathogenic as determined by weight loss and conferred more than 90% protection against lethal challenge with A/Chicken/Kurgan/3/05 infection. Inactivated H1N1 vaccine in mice offered no protection against challenge with H5N1 virus, while live cold-adapted H1N1 vaccine reduced the mortality near to zero level. CONCLUSIONS: The high yield, safety, and protectivity of VN-Len and Ku-Len made them promising strains for the production of inactivated and live vaccines against H5N1 viruses.


Subject(s)
Influenza A Virus, H5N1 Subtype/immunology , Influenza Vaccines/immunology , Influenza in Birds/prevention & control , Influenza, Human/prevention & control , Animals , Antibodies, Viral/immunology , Chickens , Hemagglutinin Glycoproteins, Influenza Virus/adverse effects , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Influenza A Virus, H5N1 Subtype/genetics , Influenza Vaccines/adverse effects , Influenza Vaccines/genetics , Influenza in Birds/immunology , Influenza in Birds/virology , Influenza, Human/immunology , Influenza, Human/virology , Mice , Mice, Inbred BALB C , Vaccines, Attenuated/adverse effects , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Vaccines, Inactivated/adverse effects , Vaccines, Inactivated/genetics , Vaccines, Inactivated/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...