Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
JCI Insight ; 3(5)2018 03 08.
Article in English | MEDLINE | ID: mdl-29515032

ABSTRACT

Graft-versus-host disease (GVHD) is a life-threatening complication of allogeneic stem cell transplantation induced by the influx of donor-derived effector T cells (TE) into peripheral tissues. Current treatment strategies rely on targeting systemic T cells; however, the precise location and nature of instructions that program TE to become pathogenic and trigger injury are unknown. We therefore used weighted gene coexpression network analysis to construct an unbiased spatial map of TE differentiation during the evolution of GVHD and identified wide variation in effector programs in mice and humans according to location. Idiosyncrasy of effector programming in affected organs did not result from variation in T cell receptor repertoire or the selection of optimally activated TE. Instead, TE were reprogrammed by tissue-autonomous mechanisms in target organs for site-specific proinflammatory functions that were highly divergent from those primed in lymph nodes. In the skin, we combined the correlation-based network with a module-based differential expression analysis and showed that Langerhans cells provided in situ instructions for a Notch-dependent T cell gene cluster critical for triggering local injury. Thus, the principal determinant of TE pathogenicity in GVHD is the final destination, highlighting the need for target organ-specific approaches to block immunopathology while avoiding global immune suppression.


Subject(s)
Cellular Reprogramming/immunology , Graft vs Host Disease/immunology , Langerhans Cells/immunology , Skin/immunology , T-Lymphocytes, Cytotoxic/immunology , Animals , Antigens, CD/genetics , Antigens, CD/metabolism , Antigens, Surface/genetics , Antigens, Surface/metabolism , Bone Marrow Transplantation/adverse effects , Cells, Cultured , Cellular Reprogramming/genetics , Disease Models, Animal , Female , Gene Expression Regulation/immunology , Graft vs Host Disease/pathology , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Langerhans Cells/metabolism , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Male , Mannose-Binding Lectins/genetics , Mannose-Binding Lectins/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Multigene Family/genetics , Multigene Family/immunology , Primary Cell Culture , Receptors, Notch/metabolism , Skin/cytology , Skin/pathology , T-Lymphocytes, Cytotoxic/metabolism , Transplantation Chimera , Transplantation, Homologous/adverse effects
2.
Sci Transl Med ; 9(416)2017 Nov 15.
Article in English | MEDLINE | ID: mdl-29141887

ABSTRACT

The immunosuppressive activity of mesenchymal stromal cells (MSCs) is well documented. However, the therapeutic benefit is completely unpredictable, thus raising concerns about MSC efficacy. One of the affecting factors is the unresolved conundrum that, despite being immunosuppressive, MSCs are undetectable after administration. Therefore, understanding the fate of infused MSCs could help predict clinical responses. Using a murine model of graft-versus-host disease (GvHD), we demonstrate that MSCs are actively induced to undergo perforin-dependent apoptosis by recipient cytotoxic cells and that this process is essential to initiate MSC-induced immunosuppression. When examining patients with GvHD who received MSCs, we found a striking parallel, whereby only those with high cytotoxic activity against MSCs responded to MSC infusion, whereas those with low activity did not. The need for recipient cytotoxic cell activity could be replaced by the infusion of apoptotic MSCs generated ex vivo. After infusion, recipient phagocytes engulf apoptotic MSCs and produce indoleamine 2,3-dioxygenase, which is ultimately necessary for effecting immunosuppression. Therefore, we propose the innovative concept that patients should be stratified for MSC treatment according to their ability to kill MSCs or that all patients could be treated with ex vivo apoptotic MSCs.


Subject(s)
Apoptosis/physiology , Mesenchymal Stem Cells/cytology , Animals , Graft vs Host Disease/metabolism , Graft vs Host Disease/physiopathology , Humans , Immunomodulation/genetics , Immunomodulation/physiology , Immunosuppression Therapy/methods , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/physiology
3.
Chemistry ; 22(16): 5657-64, 2016 Apr 11.
Article in English | MEDLINE | ID: mdl-26929153

ABSTRACT

The 2,11-cembranoid family of natural products has been used as inspiration for the synthesis of a structurally simplified, functionally diverse library of octahydroisobenzofuran-based compounds designed to augment a typical medicinal chemistry library screen. Ring-closing metathesis, lactonisation and SmI2 -mediated methods were exemplified and applied to the installation of a third ring to mimic the nine-membered ring of the 2,11-cembranoids. The library was assessed for aqueous solubility and permeability, with a chemical-space analysis performed for comparison to the family of cembranoid natural products and a sample set of a screening library. Preliminary investigations in cancer cells showed that the simpler scaffolds could recapitulate the reported anti-migratory activity of the natural products.


Subject(s)
Benzofurans/chemistry , Biological Products/chemical synthesis , Diterpenes/chemical synthesis , Lactones/chemistry , Small Molecule Libraries/chemistry , Biological Products/chemistry , Chemistry, Pharmaceutical , Diterpenes/chemistry
4.
BMC Biol ; 10: 29, 2012 Mar 22.
Article in English | MEDLINE | ID: mdl-22439642

ABSTRACT

BACKGROUND: There is overwhelming evidence that in vitro three-dimensional tumor cell cultures more accurately reflect the complex in vivo microenvironment than simple two-dimensional cell monolayers, not least with respect to gene expression profiles, signaling pathway activity and drug sensitivity. However, most currently available three-dimensional techniques are time consuming and/or lack reproducibility; thus standardized and rapid protocols are urgently needed. RESULTS: To address this requirement, we have developed a versatile toolkit of reproducible three-dimensional tumor spheroid models for dynamic, automated, quantitative imaging and analysis that are compatible with routine high-throughput preclinical studies. Not only do these microplate methods measure three-dimensional tumor growth, but they have also been significantly enhanced to facilitate a range of functional assays exemplifying additional key hallmarks of cancer, namely cell motility and matrix invasion. Moreover, mutual tissue invasion and angiogenesis is accommodated by coculturing tumor spheroids with murine embryoid bodies within which angiogenic differentiation occurs. Highly malignant human tumor cells were selected to exemplify therapeutic effects of three specific molecularly-targeted agents: PI-103 (phosphatidylinositol-3-kinase (PI3K)-mammalian target of rapamycin (mTOR) inhibitor), 17-N-allylamino-17-demethoxygeldanamycin (17-AAG) (heat shock protein 90 (HSP90) inhibitor) and CCT130234 (in-house phospholipase C (PLC)γ inhibitor). Fully automated analysis using a Celigo cytometer was validated for tumor spheroid growth and invasion against standard image analysis techniques, with excellent reproducibility and significantly increased throughput. In addition, we discovered key differential sensitivities to targeted agents between two-dimensional and three-dimensional cultures, and also demonstrated enhanced potency of some agents against cell migration/invasion compared with proliferation, suggesting their preferential utility in metastatic disease. CONCLUSIONS: We have established and validated a suite of highly reproducible tumor microplate three-dimensional functional assays to enhance the biological relevance of early preclinical cancer studies. We believe these assays will increase the translational predictive value of in vitro drug evaluation studies and reduce the need for in vivo studies by more effective triaging of compounds.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Evaluation/methods , Embryonic Stem Cells/drug effects , Models, Biological , Animals , Benzoquinones/pharmacology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Furans/pharmacology , HSP90 Heat-Shock Proteins/pharmacology , Lactams, Macrocyclic/pharmacology , Mice , Pyridines/pharmacology , Pyrimidines/pharmacology , Signal Transduction , Tumor Microenvironment/drug effects
5.
Eur Cell Mater ; 22: 178-89, 2011 Sep 20.
Article in English | MEDLINE | ID: mdl-21932194

ABSTRACT

The cellular mechanisms by which articular cartilage responds to load are poorly understood, but such responses may involve regulation at the level of protein translation rather than synthesis of mRNA. We investigated the role of translational control in cyclically (0.5 Hz, 0.1 Hz and 0.05 Hz) and statically loaded porcine articular cartilage explants. Messenger RNA was extracted for real time polymerase chain reaction (RT-PCR) and newly synthesised proteins were measured by their incorporation of radiolabelled 35S[methionine/cysteine] or 35SO4. Some medium from loaded and unloaded explants was immunoblotted for type II collagen, CTGF and TIMP3. The pathways that control protein translation were investigated by immunoblotting explant lysates for PKR, PERK (PKR like endoplasmic reticulum kinase), eIF2a (eukaryotic initiation factor 2a), eEFs (eukaryotic elongation factors), and AMP-dependent kinase. Explants were also loaded in the presence of inhibitors of PKR, the fibroblast growth factor (FGF) receptor and PI3 kinase. Cyclic loading caused complete global translational arrest as evidenced by a total suppression of new protein synthesis whilst maintaining mRNA levels. Translational arrest did not occur following static loading and was partly dependent upon the load frequency. There was a rebound increase in protein synthesis when labelling was performed after load had been withdrawn. Phosphorylation of PKR occurred in explants following cyclic load and inhibition of PKR modestly reversed suppression of newly synthesised proteins suggesting that PKR, at least in part, was responsible for loading induced translational arrest. These results show that translational control provides a rapid and potentially important mechanism for controlling the synthetic responses of articular chondrocytes in response to different types of mechanical load.


Subject(s)
Cartilage, Articular/cytology , Cartilage, Articular/physiology , Chondrocytes/physiology , Protein Biosynthesis , Stress, Mechanical , eIF-2 Kinase/metabolism , Animals , Cartilage, Articular/metabolism , Cells, Cultured , Chondrocytes/metabolism , Elongation Factor 2 Kinase/biosynthesis , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Phosphoinositide-3 Kinase Inhibitors , Phosphorylation , RNA, Messenger/biosynthesis , Real-Time Polymerase Chain Reaction , Receptors, Fibroblast Growth Factor/antagonists & inhibitors , Signal Transduction , Swine , eIF-2 Kinase/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...