Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Anal Biochem ; 676: 115245, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37429485

ABSTRACT

Genetic purity of seeds is one of the critical aspects in the seed industry. Molecular seed testing laboratories are utilizing PCR based diagnostic tools for genetic purity analysis. High quality DNA is an essential prerequisite for such analyses. Here, we demonstrate a robust and inexpensive DNA extraction method to isolate genomic DNA from variety of crops. Current method (M2) was compared with four commonly used DNA isolation methods for PCR-based genetic characterization and High Resolution Melt (HRM) based hybridity analysis of cotton, okra, tomato and maize using SSR markers. DNA extracted through current method showed excellent yield and quality as compared to other methods. High quality, PCR ready DNA was isolated within 30-50 min and displayed best results for genetic purity analysis using HRM. In contrast, several genomic DNA samples extracted using other methods were found unsuitable for HRM analysis. Our method can be a perfect choice in seed industry, where thousands of samples are processed every day. Notably, using our method single technician can extract DNA from 96 leaf samples within 30-50 min, at a cost of only $0.11/sample. Overall, current DNA extraction method is a reliable and cost-effective solution for large-scale genotyping experiments in the agricultural industry.


Subject(s)
Genotyping Techniques , Seedlings , Genotype , Genotyping Techniques/methods , Cost-Benefit Analysis , DNA, Plant/genetics , Seeds/genetics , Genomics
2.
Insect Biochem Mol Biol ; 103: 36-45, 2018 12.
Article in English | MEDLINE | ID: mdl-30352260

ABSTRACT

The phytophagous stink bug, Nezara viridula (L.) infests multiple plant species and impacts agricultural production worldwide. We analyzed the transcriptomes of N. viridula accessory salivary gland (ASG), principal salivary gland (PSG) and gut, with a focus on putative digestive proteases and nucleases that present a primary obstacle for the stability of protein- or nucleic acid-based stink bug control approaches. We performed high throughput Illumina sequencing followed by de novo transcriptome assemblies. We identified the sequences of 141 unique proteases and 134 nucleases from the N. viridula transcriptomes. Analysis of relative transcript abundance in conjunction with previously reported proteome data (Lomate and Bonning, 2016) supports high levels of serine protease expression in the salivary glands and high cysteine protease expression in the gut. Specifically, trypsin and chymotrypsin transcripts were abundant in the PSG, and cathepsin L-like cysteine protease transcripts were abundant in the gut. Nuclease transcript levels were generally lower than those of the proteases, the exception being abundant transcripts of ribonuclease-C20 in the PSG. The abundance of chymotrypsin, trypsin, and some carboxypeptidase transcripts suggests a significant role for the PSG in production of digestive enzymes. This result is at odds with the premise that the ASG produces watery saliva, which is high in enzymatic activity, while the PSG produces only sheath saliva. We have generated a comprehensive transcriptome sequence dataset from the digestive organs of N. viridula, identified major protease and nuclease genes and confirmed expression of the most abundant enzymes thereby providing greater insight into the digestive physiology of N. viridula.


Subject(s)
Heteroptera/enzymology , Insect Proteins/metabolism , Peptide Hydrolases/metabolism , Ribonucleases/metabolism , Animals , Gastrointestinal Tract/enzymology , Heteroptera/genetics , Insect Proteins/genetics , Peptide Hydrolases/genetics , Ribonucleases/genetics , Salivary Glands/enzymology , Transcription, Genetic , Transcriptome
3.
Mol Cell Proteomics ; 17(7): 1324-1336, 2018 07.
Article in English | MEDLINE | ID: mdl-29661852

ABSTRACT

Insects adapt to plant protease inhibitors (PIs) present in their diet by differentially regulating multiple digestive proteases. However, mechanisms regulating protease gene expression in insects are largely enigmatic. Ingestion of multi-domain recombinant Capsicum annuum protease inhibitor-7 (CanPI-7) arrests growth and development of Helicoverpa armigera (Lepidoptera: Noctuidae). Using de novo RNA sequencing and proteomic analysis, we examined the response of H. armigera larvae fed on recombinant CanPI-7 at different time intervals. Here, we present evidence supporting a dynamic transition in H. armigera protease expression on CanPI-7 feeding with general down-regulation of protease genes at early time points (0.5 to 6 h) and significant up-regulation of specific trypsin, chymotrypsin and aminopeptidase genes at later time points (12 to 48 h). Further, coexpression of H. armigera endogenous PIs with several digestive protease genes were apparent. In addition to the differential expression of endogenous H. armigera PIs, we also observed a distinct novel isoform of endogenous PI in CanPI-7 fed H. armigera larvae. Based on present and earlier studies, we propose potential mechanism of protease regulation in H. armigera and subsequent adaptation strategy to cope with anti-nutritional components of plants.


Subject(s)
Gene Expression Profiling/methods , Gene Expression Regulation , Moths/genetics , Moths/metabolism , Peptide Hydrolases/metabolism , Protease Inhibitors/metabolism , Proteomics/methods , Animals , Digestive System/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism , Models, Biological , Protein Binding , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Analysis, RNA
4.
Arch Insect Biochem Physiol ; 98(3): e21459, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29527721

ABSTRACT

Management of the brown marmorated stink bug, Halyomorpha halys (Hemiptera: Pentatomidae), an invasive, agricultural pest in the United States, has presented significant challenges. This polyphagous insect uses both extra-oral and gut-based digestion thwarting protein- or nucleotide-based control strategies. The objective of this study was to biochemically characterize the digestive enzymes (proteases and nucleases) from the saliva, salivary gland and the gut of H. halys. Enzyme profiles for the two tissues and saliva radically differ: The pH optimum for proteases in the gut was six, with cysteine proteases predominant. In contrast, the alkaline pH optima for protease activity in the salivary gland (8-10) and saliva (7) reflected abundant serine protease and cathepsin activities. RNase enzymes were most abundant in saliva, while dsRNase and DNase activities were higher in the salivary gland and saliva compared to those in the gut. These very different enzyme profiles highlight the biphasic digestive system used by this invasive species for efficient processing of plant nutrients. Knowledge of H. halys digestive physiology will allow for counteractive measures targeting digestive enzymes or for appropriate protection of protein- or nucleotide-based management options targeting this pest.


Subject(s)
Deoxyribonucleases/metabolism , Digestion , Hemiptera/enzymology , Peptide Hydrolases/metabolism , Ribonucleases/metabolism , Animals , Substrate Specificity
5.
Sci Rep ; 6: 27587, 2016 06 10.
Article in English | MEDLINE | ID: mdl-27282882

ABSTRACT

Stink bugs negatively impact numerous plant species of agricultural and horticultural importance. While efforts to develop effective control measures are underway, the unique digestive physiology of these pests presents a significant hurdle for either protein- or nucleotide-based management options. Here we report the comparative biochemical and proteomic characterization of proteases and nucleases from the gut, salivary gland and saliva of the southern green stink bug, Nezara viridula. The pH optimum for protease activity was acidic (5 to 6) in the gut with the primary proteases being cysteine proteases, and alkaline (8 to 9) in the saliva and salivary gland with the primary proteases being serine proteases. The serine proteases in saliva differ biochemically from trypsin and chymotrypsin, and the cathepsins in the gut and saliva showed distinct properties in inhibitor assays. Nuclease activity (DNase, RNase, dsRNase) was concentrated in the salivary gland and saliva with negligible activity in the gut. The most abundant proteins of the gut (530) and salivary gland (631) identified by proteomic analysis included four gut proteases along with eight proteases and one nuclease from the salivary gland. Understanding of N. viridula digestive physiology will facilitate the design of new strategies for management of this significant pest.


Subject(s)
Deoxyribonucleases/genetics , Heteroptera/enzymology , Peptide Hydrolases/genetics , Proteomics , Agriculture , Animals , Gastrointestinal Microbiome/genetics , Heteroptera/genetics , Heteroptera/pathogenicity , Population Dynamics , Saliva/enzymology , Salivary Glands/enzymology
6.
Planta ; 242(4): 761-71, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26159435

ABSTRACT

MAIN CONCLUSION: Available history manifests contemporary diversity that exists in plant-insect interactions. A radical thinking is necessary for developing strategies that can co-opt natural insect-plant mutualism, ecology and environmental safety for crop protection since current agricultural practices can reduce species richness and evenness. The global environmental changes, such as increased temperature, CO2 and ozone levels, biological invasions, land-use change and habitat fragmentation together play a significant role in re-shaping the plant-insect multi-trophic interactions. Diverse natural products need to be studied and explored for their biological functions as insect pest control agents. In order to assure the success of an integrated pest management strategy, human activities need to be harmonized to minimize the global climate changes. Plant-insect interaction is one of the most primitive and co-evolved associations, often influenced by surrounding changes. In this review, we account the persistence and evolution of plant-insect interactions, with particular focus on the effect of climate change and human interference on these interactions. Plants and insects have been maintaining their existence through a mutual service-resource relationship while defending themselves. We provide a comprehensive catalog of various defense strategies employed by the plants and/or insects. Furthermore, several important factors such as accelerated diversification, imbalance in the mutualism, and chemical arms race between plants and insects as indirect consequences of human practices are highlighted. Inappropriate implementation of several modern agricultural practices has resulted in (i) endangered mutualisms, (ii) pest status and resistance in insects and (iii) ecological instability. Moreover, altered environmental conditions eventually triggered the resetting of plant-insect interactions. Hence, multitrophic approaches that can harmonize human activities and minimize their interference in native plant-insect interactions are needed to maintain natural balance between the existence of plants and insects.


Subject(s)
Biological Evolution , Ecology , Insecta/physiology , Plant Physiological Phenomena , Animals
7.
Planta ; 241(2): 319-31, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25269396

ABSTRACT

MAIN CONCLUSION: The proteinase inhibitor (PI) genes from Capsicum annuum were characterized with respect to their UTR, introns and promoter elements. The occurrence of PIs with circularly permuted domain organization was evident. Several potato inhibitor II (Pin-II) type proteinase inhibitor (PI) genes have been analyzed from Capsicum annuum (L.) with respect to their differential expression during plant defense response. However, complete gene characterization of any of these C. annuum PIs (CanPIs) has not been carried out so far. Complete gene architectures of a previously identified CanPI-7 (Beads-on-string, Type A) and a member of newly isolated Bracelet type B, CanPI-69 are reported in this study. The 5' UTR (untranslated region), 3'UTR, and intronic sequences of both the CanPI genes were obtained. The genomic sequence of CanPI-7 exhibited, exon 1 (49 base pair, bp) and exon 2 (740 bp) interrupted by a 294-bp long type I intron. We noted the occurrence of three multi-domain PIs (CanPI-69, 70, 71) with circularly permuted domain organization. CanPI-69 was found to possess exon 1 (49 bp), exon 2 (551 bp) and a 584-bp long type I intron. The upstream sequence analysis of CanPI-7 and CanPI-69 predicted various transcription factor-binding sites including TATA and CAAT boxes, hormone-responsive elements (ABRELATERD1, DOFCOREZM, ERELEE4), and a defense-responsive element (WRKY71OS). Binding of transcription factors such as zinc finger motif MADS-box and MYB to the promoter regions was confirmed using electrophoretic mobility shift assay followed by mass spectrometric identification. The 3' UTR analysis for 25 CanPI genes revealed unique/distinct 3' UTR sequence for each gene. Structures of three domain CanPIs of type A and B were predicted and further analyzed for their attributes. This investigation of CanPI gene architecture will enable the better understanding of the genetic elements present in CanPIs.


Subject(s)
Capsicum/metabolism , Plant Proteins/chemistry , Protease Inhibitors/chemistry , Amino Acid Sequence , Exons/genetics , Introns/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Promoter Regions, Genetic/genetics , Protease Inhibitors/metabolism
8.
Insect Biochem Mol Biol ; 54: 129-37, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25263090

ABSTRACT

The present investigation is an effort to determine the possible roles of microRNAs (miRNAs) in the regulation of protease gene expression in Helicoverpa armigera upon exposure to plant protease inhibitors (PIs). Using Illumina platform, deep sequencing of 12 small RNA libraries was performed from H. armigera larvae fed on artificial diet (AD) or recombinant Capsicum annuum PI-7 (rCanPI-7) incorporated diet, at various time intervals (0.5, 2, 6, 12, 24, and 48 h). Sequencing data were analyzed with miRDeep2 software; a total of 186 unique miRNAs were identified from all the 12 libraries, out of which 96 were conserved while 90 were novel. These miRNAs showed all the conserved characteristics of insect miRNAs. Homology analysis revealed that most of the identified miRNAs were insect-specific, and more than 50 miRNAs were Lepidoptera-specific. Several candidate miRNAs (conserved and novel) were differentially expressed in rCanPI-7 fed larvae as compared to the larvae fed on AD. H. armigera miRNAs were found to have target sites in several protease genes as well as in protease regulation related genes such as serine PI and immune reactive PI. As expected, negative correlation in the relative abundance of miRNAs and their target mRNAs was evident from qualitative real time polymerase chain reaction analysis. The investigation revealed potential roles of miRNAs in H. armigera protease gene regulation.


Subject(s)
Gene Expression Regulation, Enzymologic/drug effects , MicroRNAs/genetics , Moths/genetics , Protease Inhibitors/metabolism , Animals , Capsicum/chemistry , Capsicum/genetics , Gastrointestinal Tract/enzymology , Larva/enzymology , Moths/enzymology , Protease Inhibitors/pharmacology , Real-Time Polymerase Chain Reaction , Recombinant Proteins/pharmacology
9.
BMC Biochem ; 14: 32, 2013 Nov 14.
Article in English | MEDLINE | ID: mdl-24229392

ABSTRACT

BACKGROUND: Proteases are important enzymes involved in numerous essential physiological processes and hold a strong potential for industrial applications. The proteolytic activity of insects' gut is endowed by many isoforms with diverse properties and specificities. Thus, insect proteases can act as a tool in industrial processes. RESULTS: In the present study, purification and properties of a serine alkaline protease from Periplaneta americana and its potential application as an additive in various bio-formulations are reported. The enzyme was purified near to homogeneity by using acetone precipitation and Sephadex G-100 gel filtration chromatography. Enzyme activity was increased up to 4.2 fold after gel filtration chromatography. The purified enzyme appeared as single protein-band with a molecular mass of ~ 27.8 kDa in SDS-PAGE. The optimum pH and temperature for the proteolytic activity for purified protein were found around pH 8.0 and 60°C respectively. Complete inhibition of the purified enzyme by phenylmethylsulfonyl fluoride confirmed that the protease was of serine-type. The purified enzyme revealed high stability and compatibility towards detergents, oxidizing, reducing, and bleaching agents. In addition, enzyme also showed stability towards organic solvents and commercial detergents. CONCLUSION: Several important properties of a serine protease from P. Americana were revealed. Moreover, insects can serve as excellent and alternative source of industrially important proteases with unique properties, which can be utilized as additives in detergents, stain removers and other bio-formulations. Properties of the P. americana protease accounted in the present investigation can be exploited further in various industrial processes. As an industrial prospective, identification of enzymes with varying essential properties from different insect species might be good approach and bioresource.


Subject(s)
Periplaneta/enzymology , Serine Proteases/metabolism , Acetone/chemistry , Animals , Chromatography, Gel , Hydrogen-Ion Concentration , Ions/chemistry , Metals/chemistry , Molecular Weight , Organic Chemicals/chemistry , Oxidants/chemistry , Protein Stability , Serine Proteases/chemistry , Serine Proteases/isolation & purification , Surface-Active Agents/chemistry
10.
PLoS One ; 8(9): e74889, 2013.
Article in English | MEDLINE | ID: mdl-24098675

ABSTRACT

Jasmonate inducible plant leucine aminopeptidase (LAP) is proposed to serve as direct defense in the insect midgut. However, exact functions of inducible plant LAPs in the insect midgut remain to be estimated. In the present investigation, we report the direct defensive role of pigeon pea inducible LAP in the midgut of Helicoverpa armigera (Lepidoptera: Noctuidae) and responses of midgut soluble aminopeptidases and serine proteinases upon LAP ingestion. Larval growth and survival was significantly reduced on the diets supplemented with pigeon pea LAP. Aminopeptidase activities in larvae remain unaltered in presence or absence of inducible LAP in the diet. On the contrary, serine proteinase activities were significantly decreased in the larvae reared on pigeon pea LAP containing diet as compared to larvae fed on diet without LAP. Our data suggest that pigeon pea inducible LAP is responsible for the degradation of midgut serine proteinases upon ingestion. Reduction in the aminopeptidase activity with LpNA in the H. armigera larvae was compensated with an induction of aminopeptidase activity with ApNA. Our findings could be helpful to further dissect the roles of plant inducible LAPs in the direct plant defense against herbivory.


Subject(s)
Cajanus/enzymology , Digestive System Physiological Phenomena/drug effects , Leucyl Aminopeptidase/pharmacology , Moths/physiology , Animals , Diet , Electrophoresis, Polyacrylamide Gel , Larva/drug effects , Larva/growth & development , Serine Proteases/metabolism , Survival Analysis
11.
J Proteome Res ; 12(11): 4727-37, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24090158

ABSTRACT

Insect pests remain a major reason for crop loss worldwide despite extensive use of chemical insecticides. More than 50% of all insecticides are organophosphates, followed by synthetic pyrethroids, organochlorines, carbamates, and biopesticides, and their continued use may have many environmental, agricultural, medical, and socioeconomic issues. Importantly, only a countable number of insects have acquired the status of crop pests, mostly due to monoculture of crop plants and polyphagous nature of the insects. We focus on adaptations of Lepidopteran insects to phytochemicals and synthetic pesticides in native and modern agricultural systems. Because of heavy use of chemical insecticides, a strong selection pressure is imposed on insect populations, resulting in the emergence of resistance against candidate compound(s). Current knowledge suggests that insects generally implement a three-tier system to overcome the effect of toxic compounds at physiological, biochemical, and genetic levels. Furthermore, we have discussed whether the adaptation to phytochemicals provides an advantage to the insect while encountering synthetic insecticide molecules. Specific metabolic pathways employed by insects to convert deterrents into less toxic forms or their removal from the system are highlighted. Using the proteomics approach, insect proteins interacting with insecticides can be identified, and their modification in resistant insects can be characterized. Also, systems biology studies can offer useful cues to decipher the molecular networks participating in the metabolism of detrimental compounds.


Subject(s)
Adaptation, Biological/genetics , Insecticide Resistance/genetics , Lepidoptera/genetics , Metabolic Networks and Pathways/genetics , Models, Biological , Proteomics/methods , Selection, Genetic , Animals , Lepidoptera/metabolism , Phytochemicals , Systems Biology/methods
12.
Plant Physiol Biochem ; 57: 193-9, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22721949

ABSTRACT

Wounding of plants by chewing insects or other damage induces the synthesis of defensive proteinase inhibitors (PI) in both wounded and distal unwounded leaves. In the present paper we report the characterization of inducible defensive PI from pigeon pea (Cajanus cajan) and its in vitro interaction with Helicoverpa armigera gut proteinases (HGP). We found that PI activity was induced in local as well as systemic leaves of pigeon pea by the wounding and methyl jasmonate (MeJA) application. Consistent induction of PI was observed in two wild cultivars of pigeon pea at various growth stages. The estimated molecular weight of inducible PI was ~16.5 kDa. Electrophoretic analysis and enzyme assays revealed that the induced PI significantly inhibited total gut proteinase as well as trypsin-like activity from the midgut of H. armigera. The induced PI was found to be inhibitor of trypsin as well as chymotrypsin. Study could be important to know the further roles of defensive PIs.


Subject(s)
Acetates/pharmacology , Cyclopentanes/pharmacology , Digestive System/enzymology , Insect Proteins/metabolism , Oxylipins/pharmacology , Peptide Hydrolases/metabolism , Pisum sativum/drug effects , Pisum sativum/metabolism , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacology , Animals , Enzyme Activation/drug effects , Insecta
13.
J Plant Physiol ; 168(15): 1735-42, 2011 Oct 15.
Article in English | MEDLINE | ID: mdl-21640431

ABSTRACT

Aminopeptidases play important role in the mobilization of storage proteins at the cotyledon during seed germination. It is often referred as inducible component of defense against herbivore attack. However the role of aminopeptidase in response to pathogen attack in germinating seeds is remained to be unknown. An attempt was made to analyze change in the aminopeptidase (EC 3.4.11.1) activity during germination of pigeonpea (Cajanus cajan L.) seeds by infecting the seeds with fungi. Two aminopeptidase activity bands (AP1 and AP2) were detected in control as well as infected pigeonpea seeds. During latter stages of germination in control seeds, AP1 activity was replaced by AP2 activity. However AP1 activity was significantly induced in germinating seeds infected with Fusarium oxysporum f.sp. ciceri and Aspergillus niger var. niger. The estimated molecular weights of AP1 and AP2 were ∼97 and 42.8kDa respectively. The induced enzyme was purified up to 30 fold by gel filtration chromatography. The purified enzyme was preferentially cleaved leucine p-nitroanilide than alanine p-nitroanilide. The enzyme was strongly inhibited by bestatin and 1,10-phenanthroline. Almost 50% of enzyme activity was inhibited by ethylene diamine tetra acetate. The purified enzyme showed broad pH optima ranging from pH 6.0 to 9.0 and optimum at pH 8.5. The induction of aminopeptidase activity during pigeonpea seed germination and in response to pathogen attack indicates significant involvement of these enzymes in primary as well as secondary metabolism of the seeds. These findings could be helpful to further dissect defensive role of aminopeptidases in seed germination which is an important event in plant's life.


Subject(s)
Aminopeptidases/metabolism , Aspergillus niger/physiology , Cajanus/enzymology , Fusarium/physiology , Germination/physiology , Seeds/enzymology , Aminopeptidases/antagonists & inhibitors , Aminopeptidases/chemistry , Aminopeptidases/isolation & purification , Cajanus/growth & development , Cajanus/microbiology , Cajanus/physiology , Chromatography, Gel , Edetic Acid/pharmacology , Hydrogen-Ion Concentration , Leucine/analogs & derivatives , Leucine/pharmacology , Molecular Weight , Phenanthrolines/pharmacology , Plant Proteins/antagonists & inhibitors , Plant Proteins/isolation & purification , Plant Proteins/metabolism , Protein Isoforms , Seeds/growth & development , Seeds/microbiology , Seeds/physiology , Substrate Specificity
14.
Plant Physiol Biochem ; 49(6): 609-16, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21420308

ABSTRACT

Aminopeptidases are ubiquitous in nature and their activities have been identified in several plant species. Leucine aminopeptidases (LAPs) are predominantly studied in solanaceous plants and are induced in response to wounding, herbivory and methyl jasmonate (MeJA). The functions of plant aminopeptidases are still under discussion and it is likely that the different classes play various roles. In the present study we report the local and systemic induction of LAP-like activity upon mechanical wounding and MeJA treatment. Two proteins with LAP-like activity were detected in pigeonpea leaves. They were designated as AP1 and AP2. AP1 activity was significantly induced upon wounding and application of MeJA. The estimated molecular masses of AP1 and AP2 were ∼ 60 and 41 kDa respectively in SDS-PAGE. The pH optimum for LAP-like activity in control leaf extracts was found to be neutral (pH 7.0) however the enzymes showed highest activity at alkaline pH (pH 9.0) in the leaf extracts of treated plants. The temperature optimum for LAP-like activity was around 40-50 °C. The enzymes were strongly inhibited by 1, 10 phenanthroline and bestatin. Heavy metal ions and EDTA inhibited LAP-like activities, whereas Mn(+2) and Mg(+2) activated the enzyme activities. Beside LpNA (33.5 U/mg/min) pigeonpea LAP-like enzymes also cleaved ApNA (15 U/mg/min) but were unable to cleave VpNA. Total proteolytic activity was also observed to be induced in treated plants. LAP-like activity was increased upto 19.5 fold after gel filtration chromatography. Results suggest that these enzymes may have functional defensive role in pigeonpea.


Subject(s)
Acetates/pharmacology , Adaptation, Physiological , Cajanus/enzymology , Cyclopentanes/pharmacology , Leucyl Aminopeptidase/metabolism , Oxylipins/pharmacology , Plant Diseases , Plant Growth Regulators/pharmacology , Plant Proteins/metabolism , Cajanus/drug effects , Enzyme Inhibitors/pharmacology , Hydrogen-Ion Concentration , Hydrolysis , Magnesium/metabolism , Manganese/metabolism , Molecular Weight , Plant Leaves/drug effects , Plant Leaves/enzymology , Temperature
15.
Comp Biochem Physiol B Biochem Mol Biol ; 155(2): 164-70, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19913106

ABSTRACT

We report the partial purification to apparent homogeneity of a soluble aminopeptidase (EC 3.4.11.1) from midgut of Helicoverpa armigera larvae, which preferentially degraded Leucine p-nitroanilide (LpNA). After midgut isolation, extraction and precipitation of soluble proteins with acetone, proteins were purified in two consecutive steps including gel filtration and ion-exchange chromatographies. Aminopeptidase activity was increased 8.95 fold after gel filtration chromatography. The purified enzyme appeared as single band with a molecular mass of approximately 112 kDa in SDS-PAGE, with a pH optimum of 7.0. Zymogram analysis revealed two enzymatically active proteinases using LpNA as substrate. The optimal temperature of aminopeptidase activity was 50-60 degrees C. The enzyme was characterized as metalloprotease as it was strongly inhibited by 1,10 phenanthroline. Strong inhibition was also being observed using the specific aminopeptidase inhibitor bestatin. Heavy metal ions, EDTA and cysteine strongly inhibited the enzyme, while Ca(+2), Mn(+2) and Mg(+2) somewhat stimulated aminopeptidase activity. Besides LpNA, the purified aminopeptidase also cleaved with decreasing activity ApNA, VpNA and BApNA. Study could be helpful to understand the mechanism of action of N-terminal degrading enzymes and also important is to further study the differential interaction of Bacillus thuringiensis cry insecticidal toxin with midgut receptor of insects.


Subject(s)
Digestive System/enzymology , Digestive System/metabolism , Glutamyl Aminopeptidase/isolation & purification , Glutamyl Aminopeptidase/metabolism , Lepidoptera/enzymology , Animals , Bacillus thuringiensis , Bacterial Toxins/metabolism , Electrophoresis , Enzyme Inhibitors/pharmacology , Glutamyl Aminopeptidase/chemistry , Hydrogen-Ion Concentration , Larva/anatomy & histology , Larva/enzymology , Lepidoptera/anatomy & histology , Lepidoptera/growth & development , Metals/pharmacology , Molecular Weight , Solubility , Substrate Specificity , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...