Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Bot ; 71(1): 73-89, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31494674

ABSTRACT

Aggrephagy, a type of selective autophagy that sequesters protein aggregates for degradation in the vacuole, is an important protein quality control mechanism, particularly during cell stress. In mammalian cells, aggrephagy and several other forms of selective autophagy are mediated by dedicated cargo receptors such as NEIGHBOR OF BRCA1 (NBR1). Although plant NBR1 homologs have been linked to selective autophagy during biotic stress, it remains unclear how they impact selective autophagy under non-stressed and abiotic stress conditions. Through microscopic and biochemical analysis of nbr1 mutants expressing autophagy markers and an aggregation-prone reporter, we tested the connection between NBR1 and aggrephagy in Arabidopsis. Although NBR1 is not essential for general autophagy, or for the selective clearance of peroxisomes, mitochondria, or the ER, we found that NBR1 is required for the heat-induced formation of autophagic vesicles. Moreover, cytoplasmic puncta containing aggregation-prone proteins, which were rarely observed in wild-type plants, were found to accumulate in nbr1 mutants under both control and heat stress conditions. Given that NBR1 co-localizes with these cytoplasmic puncta, we propose that Arabidopsis NBR1 is a plant aggrephagy receptor essential for maintaining proteostasis under both heat stress and non-stress conditions.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/physiology , Autophagy/genetics , Carrier Proteins/genetics , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Carrier Proteins/metabolism
2.
Front Plant Sci ; 5: 267, 2014.
Article in English | MEDLINE | ID: mdl-24966862

ABSTRACT

The phosphoinositide pathway and inositol-1,4,5-triphosphate (InsP3) have been implicated in plant responses to many abiotic stresses; however, their role in response to biotic stress is not well characterized. In the current study, we show that both basal defense and systemic acquired resistance responses are affected in transgenic plants constitutively expressing the human type I inositol polyphosphate 5-phosphatase (InsP 5-ptase) which have greatly reduced InsP3 levels. Flagellin induced Ca(2+)-release as well as the expressions of some flg22 responsive genes were attenuated in the InsP 5-ptase plants. Furthermore, the InsP 5-ptase plants were more susceptible to virulent and avirulent strains of Pseudomonas syringae pv. tomato (Pst) DC3000. The InsP 5-ptase plants had lower basal salicylic acid (SA) levels and the induction of SAR in systemic leaves was reduced and delayed. Reciprocal exudate experiments showed that although the InsP 5-ptase plants produced equally effective molecules that could trigger PR-1 gene expression in wild type plants, exudates collected from either wild type or InsP 5-ptase plants triggered less PR-1 gene expression in InsP 5-ptase plants. Additionally, expression profiles indicated that several defense genes including PR-1, PR-2, PR-5, and AIG1 were basally down regulated in the InsP 5-ptase plants compared with wild type. Upon pathogen attack, expression of these genes was either not induced or showed delayed induction in systemic leaves. Our study shows that phosphoinositide signaling is one component of the plant defense network and is involved in both basal and systemic responses. The dampening of InsP3-mediated signaling affects Ca(2+) release, modulates defense gene expression and compromises plant defense responses.

SELECTION OF CITATIONS
SEARCH DETAIL
...