Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 24(22): 5707-25, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26460724

ABSTRACT

Understanding the demographic history and genetic make-up of colonizing species is critical for inferring population sources and colonization routes. This is of main interest for designing accurate control measures in areas newly colonized by vector species of economically important pathogens. The biting midge Culicoides imicola is a major vector of orbiviruses to livestock. Historically, the distribution of this species was limited to the Afrotropical region. Entomological surveys first revealed the presence of C. imicola in the south of the Mediterranean basin by the 1970s. Following recurrent reports of massive bluetongue outbreaks since the 1990s, the presence of the species was confirmed in northern areas. In this study, we addressed the chronology and processes of C. imicola colonization in the Mediterranean basin. We characterized the genetic structure of its populations across Mediterranean and African regions using both mitochondrial and nuclear markers, and combined phylogeographical analyses with population genetics and approximate Bayesian computation. We found a west/east genetic differentiation between populations, occurring both within Africa and within the Mediterranean basin. We demonstrated that three of these groups had experienced demographic expansions in the Pleistocene, probably because of climate changes during this period. Finally, we showed that C. imicola could have colonized the Mediterranean basin in the Late Pleistocene or Early Holocene through a single event of introduction; however, we cannot exclude the hypothesis involving two routes of colonization. Thus, the recent bluetongue outbreaks are not linked to C. imicola colonization event, but rather to biological changes in the vector or the virus.


Subject(s)
Ceratopogonidae/genetics , Genetics, Population , Insect Vectors/genetics , Africa , Animals , Bayes Theorem , Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Genetic Markers , Mediterranean Region , Microsatellite Repeats , Models, Genetic , Phylogeography , Sequence Analysis, DNA
2.
J Evol Biol ; 27(3): 508-17, 2014 03.
Article in English | MEDLINE | ID: mdl-24444045

ABSTRACT

The evolutionary trajectories associated with demographic, genetic and spatial disequilibrium have become an issue of growing interest in population biology. Invasive species provide unique opportunities to explore the impact of recent range expansion on life-history traits, making it possible to test for a spatial arrangement of dispersal abilities along the expanding range, in particular. We carried out controlled experiments in laboratory conditions to test the hypothesis of an increase in dispersal capacity with range expansion in Harmonia axyridis, a ladybird that has been invading Europe since 2001. We found a marked increase in the flight speed of the insects from the core to the front of the invasion range in two independent sampling transects. By contrast, we found that two other traits associated with dispersal (endurance and motivation to fly off) did not follow the same spatial gradient. Our results provide a striking illustration of the way in which predictable directional genetic changes may occur rapidly for some traits associated with dispersal during biological invasions. We discuss the consequences of our results for invasion dynamics and the evolutionary outcomes of spatially expanding populations.


Subject(s)
Coleoptera/physiology , Introduced Species , Animals , Coleoptera/genetics , Female , Flight, Animal , Male
3.
Ecol Evol ; 3(4): 864-71, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23610631

ABSTRACT

Introduction events can lead to admixture between genetically differentiated populations and bottlenecks in population size. These processes can alter the adaptive potential of invasive species by shaping genetic variation, but more importantly, they can also directly affect mean population fitness either increasing it or decreasing it. Which outcome is observed depends on the structure of the genetic load of the species. The ladybird Harmonia axyridis is a good example of invasive species where introduced populations have gone through admixture and bottleneck events. We used laboratory experiments to manipulate the relatedness among H. axyridis parental individuals to assess the possibility for heterosis or outbreeding depression in F1 generation offspring for two traits related to fitness (lifetime performance and generation time). We found that inter-populations crosses had no major impact on the lifetime performance of the offspring produced by individuals from either native or invasive populations. Significant outbreeding depression was observed only for crosses between native populations for generation time. The absence of observed heterosis is indicative of a low occurrence of fixed deleterious mutations within both the native and invasive populations of H. axyridis. The observed deterioration of fitness in native inter-population crosses most likely results from genetic incompatibilities between native genomic backgrounds. We discuss the implications of these results for the structure of genetic load in H. axyridis in the light of the available information regarding the introduction history of this species.

4.
Mol Ecol ; 20(22): 4654-70, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22004292

ABSTRACT

Correct identification of the source population of an invasive species is a prerequisite for testing hypotheses concerning the factors responsible for biological invasions. The native area of invasive species may be large, poorly known and/or genetically structured. Because the actual source population may not have been sampled, studies based on molecular markers may generate incorrect conclusions about the origin of introduced populations. In this study, we characterized the genetic structure of the invasive ladybird Harmonia axyridis in its native area using various population genetic statistics and methods. We found that native area of H. axyridis most probably consisted of two geographically distinct genetic clusters located in eastern and western Asia. We then performed approximate Bayesian computation (ABC) analyses on controlled simulated microsatellite data sets to evaluate (i) the risk of selecting incorrect introduction scenarios, including admixture between sources, when the populations of the native area are genetically structured and sampling is incomplete and (ii) the ability of ABC analysis to minimize such risks by explicitly including unsampled populations in the scenarios compared. Finally, we performed additional ABC analyses on real microsatellite data sets to retrace the origin of biocontrol and invasive populations of H. axyridis, taking into account the possibility that the structured native area may have been incompletely sampled. We found that the invasive population in eastern North America, which has served as the bridgehead for worldwide invasion by H. axyridis, was probably formed by an admixture between the eastern and western native clusters. This admixture may have facilitated adaptation of the bridgehead population.


Subject(s)
Coleoptera/genetics , Genetic Variation , Genetics, Population , Introduced Species , Animals , Asia, Western , Bayes Theorem , Cluster Analysis , Computer Simulation , Asia, Eastern , Genotype , Geography , Microsatellite Repeats , Models, Genetic , North America , Pest Control, Biological
5.
J Evol Biol ; 24(5): 1044-52, 2011 May.
Article in English | MEDLINE | ID: mdl-21342302

ABSTRACT

Hybridization can fuel evolutionary processes during biological invasions. The harlequin ladybird Harmonia axyridis has long been used as a biocontrol agent before the species became invasive worldwide. Previous analysis based on microsatellite data has shown that European invasive populations bear traces of admixture between an eastern North American source, which is at the origin of the worldwide invasion, and biocontrol strains used in Europe. In this study, we tested the hypothesis that this early admixture event may have fostered the European invasion by impacting on the phenotypes of wild European populations. Mean life history traits of experimental F(1) hybrids are compared with pure parental sources and wild European crosses. Our results reveal a biased impact whereby North American beetles benefitted from being admixed with European biocontrol strains. Resemblance between experimental hybrids and wild European invasive crosses further suggests a long-lasting effect of admixture that may still be at work and fostering invasiveness.


Subject(s)
Coleoptera/genetics , Hybridization, Genetic , Introduced Species , Pest Control, Biological , Phenotype , Animals , Biological Evolution , Coleoptera/growth & development , Female , Male
6.
Mol Ecol ; 18(10): 2198-212, 2009 May.
Article in English | MEDLINE | ID: mdl-19635073

ABSTRACT

Many plant-feeding insect species considered to be polyphagous are in fact composed of genetically differentiated sympatric populations that use different hosts and between which gene flow still exists. We studied the population genetic structure of the cotton-melon aphid Aphis gossypii that is considered as one of the most polyphagous aphid species. We used eight microsatellites to analyse the genetic diversity of numerous samples of A. gossypii collected over several years at a large geographical scale on annual crops from different plant families. The number of multilocus genotypes detected was extremely low and the genotypes were found to be associated with host plants. Five host races were unambiguously identified (Cucurbitaceae, cotton, eggplant, potato and chili- or sweet pepper). These host races were dominated by asexual clones. Plant transfer experiments using several specialized clones further confirmed the existence of host-associated trade-offs. Finally, both genetic and experimental data suggested that plants of the genus Hibiscus may be used as refuge for the specialized clones. Resource abundance is discussed as a key factor involved in the process of ecological specialization in A. gossypii.


Subject(s)
Aphids/genetics , Cucurbitaceae , Genetics, Population , Animals , Genetic Variation , Genotype , Gossypium , Microsatellite Repeats , Solanaceae , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...