Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 233: 116510, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37385415

ABSTRACT

Fire regimes in mountain landscapes of southern Europe have been shifting from their baselines due to rural abandonment and fire exclusion policies. Understanding the effects of fire on biodiversity is paramount to implement adequate management. Herein, we evaluated the relative role of burn severity and heterogeneity on bird abundance in an abandoned mountain range located in the biogeographic transition between the Eurosiberian and Mediterranean region (the Natural Park 'Baixa Limia-Serra do Xurés'). We surveyed the bird community in 206 census plots distributed across the Natural Park, both inside and outside areas affected by wildfires over the last 11 years (from 2010 to 2020). We used satellite images of Sentinel 2 and Landsat missions to quantify the burn severity and heterogeneity of each fire within each surveyed plot. We also accounted for the past land use (forestry or agropastoral use) by using a land cover information for year 2010 derived from satellite image classification. We recorded 1735 contacts from 28 bird species. Our models, fitted by using GLMs with Poisson error distribution (pseudo-R2-average of 0.22 ± 0.13), showed that up to 71% of the modeled species were linearly correlated with at least one attribute of the fire regime. The spatiotemporal variation in burnt area and severity were relevant factors for explaining the local abundance of our target species (39% of the species; Akaike weights >0.75). We also found a quadratic effect of at least one fire regime attribute on bird abundance for 60% of the modeled species. The past land use, and its legacy after 10 years, was critical to understand the role of fire (Akaike weights >0.75). Our findings confirm the importance of incorporating remotely sensed indicators of burn severity into the toolkit of decision makers to accurately anticipate the response of birds to fire management.


Subject(s)
Burns , Fires , Wildfires , Animals , Forests , Birds/physiology , Ecosystem
2.
Sci Total Environ ; 799: 149440, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34388885

ABSTRACT

The effect of fire severity and recurrence on the recovery of enzymatic activities (ß-glucosidase, urease, acid phosphatase) and bacterial activity was monitored. Unburned and burned soil samples from soil affected by a high severity wildfire and by a low severity experimental fire were subjected in laboratory to a temperature gradient to simulate different fire severities. These samples were subjected to a second laboratory heat treatment to simulate the effect of recurrence. Soil temperature was measured and used to calculate the degree-hours reached by the soil. The results showed: a) a strong effect of repeated soil heating at different temperatures on soil microbial activity; b) a different sensitivity of enzymatic activities and bacterial activity to fire, c) the magnitude of changes in these biochemical properties was related to the extent of heat supplied to samples and the previous fire/heat history, and d) degree-hours are adequate to quantify the severity of heat treatments and to examine their effects on soil microbial activity. The relationships between degree-hours and the different biochemical properties analyzed clearly demonstrate that the usefulness of these biochemical properties to detect the soil microbial community response to the heat stress followed the order: urease activity > acid phosphatase activity > ß-glucosidase activity ≫ bacterial activity.


Subject(s)
Fires , Microbiota , Wildfires , Heating , Soil , Soil Microbiology , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...