Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
Am J Physiol Heart Circ Physiol ; 323(3): H475-H489, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35904886

ABSTRACT

The study of peripheral vasculopathy with chronic metabolic disease is challenged by divergent contributions from spatial (the level of resolution or specific tissue being studied) and temporal origins (evolution of the developing impairments in time). Over many years of studying the development of skeletal muscle vasculopathy and its functional implications, we may be at the point of presenting an integrated conceptual model that addresses these challenges within the obese Zucker rat (OZR) model. At the early stages of metabolic disease, where systemic markers of elevated cardiovascular disease risk are present, the only evidence of vascular dysfunction is at postcapillary and collecting venules, where leukocyte adhesion/rolling is elevated with impaired venular endothelial function. As metabolic disease severity and duration increases, reduced microvessel density becomes evident as well as increased variability in microvascular hematocrit. Subsequently, hemodynamic impairments to distal arteriolar networks emerge, manifesting as increasing perfusion heterogeneity and impaired arteriolar reactivity. This retrograde "wave of dysfunction" continues, creating a condition wherein deficiencies to the distal arteriolar, capillary, and venular microcirculation stabilize and impairments to proximal arteriolar reactivity, wall mechanics, and perfusion distribution evolve. This proximal arteriolar dysfunction parallels increasing failure in fatigue resistance, hyperemic responses, and O2 uptake within self-perfused skeletal muscle. Taken together, these results present a conceptual model for the retrograde development of peripheral vasculopathy with chronic metabolic disease and provide insight into the timing and targeting of interventional strategies to improve health outcomes.NEW & NOTEWORTHY Working from an established database spanning multiple scales and times, we studied progression of peripheral microvascular dysfunction in chronic metabolic disease. The data implicate the postcapillary venular endothelium as the initiating site for vasculopathy. Indicators of dysfunction, spanning network structures, hemodynamics, vascular reactivity, and perfusion progress in an insidious retrograde manner to present as functional impairments to muscle blood flow and performance much later. The silent vasculopathy progression may provide insight into clinical treatment challenges.


Subject(s)
Metabolic Diseases , Metabolic Syndrome , Peripheral Vascular Diseases , Animals , Metabolic Syndrome/metabolism , Microcirculation/physiology , Muscle, Skeletal/blood supply , Obesity/complications , Rats , Rats, Zucker
2.
J Hypertens ; 40(3): 441-452, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34845157

ABSTRACT

OBJECTIVE: Salt-induced suppression of angiotensin II contributes to impaired endothelium-dependent vascular reactivity. The present study investigated the effect of chronic low-dose angiotensin II (ANG II) supplementation on the mechanisms of flow-induced dilation (FID) and oxidative stress at the cellular and molecular level in middle cerebral arteries (MCA) of male Sprague-Dawley rats fed high salt diet. METHODS: Rats (10 weeks old) were randomly assigned to a low salt diet group (0.4% NaCl in rat chow); high salt diet group (7 days 4% NaCl in rat chow) or HS+ANG II group [7 days high salt diet with 3 days ANG II administration via osmotic minipumps (100 ng/kg per min on days 4-7)]. FID was determined in absence/presence of the NOS inhibitor L-NAME, the non-selective cyclooxygenase (COX-1,2) inhibitor indomethacin, a selective inhibitor of CYP450 epoxygenase activity (MS-PPOH) and the superoxide dismutase mimetic TEMPOL. Gene expression of antioxidative enzymes, and of genes and proteins involved in FID mechanisms were determined by RT-qPCR and western blot. Vascular nitric oxide and superoxide/reactive oxygen species levels were assessed by direct fluorescence. Serum systemic oxidative stress parameters were measured by spectrophotometry. RESULTS: Chronic low-dose ANG II supplementation in high salt fed rats restored FID of MCAs, which was nitric oxide, prostanoid and epoxyeicosatrienoic acid dependent. ANG II changed the protein/gene expression of COXs, HIF-1α and VEGF and significantly increased GPx4 and EC-SOD antioxidative enzyme expression, decreased systemic oxidative stress, decreased superoxide/ROS levels and increased nitric oxide bioavailability in the vascular wall. CONCLUSION: Physiological levels of circulating ANG II are crucial to maintain the HIF-1α dependent mechanisms of FID and vascular oxidative balance without affecting mean arterial pressure.


Subject(s)
Angiotensin II , Sodium Chloride , Animals , Male , Rats , Angiotensin II/pharmacology , Cerebral Arteries , Diet , Dietary Supplements , Dilatation , Rats, Sprague-Dawley , Sodium Chloride/pharmacology , Vasodilation
3.
J Vasc Res ; 58(5): 286-300, 2021.
Article in English | MEDLINE | ID: mdl-33971663

ABSTRACT

The obese Zucker rat (OZR) manifests multiple risk factors for impaired cerebrovascular function, including hypertension and insulin resistance although how they combine to produce integrated vascular function is unclear. As studies have suggested that myogenic activation (MA) severity for middle cerebral arteries (MCAs) may be proportional to hypertension severity, we hypothesized that MA will negatively correlate with dilator reactivity in OZR. MA of MCA from OZR was divided into low, medium, and high based on the slope of MA, while MCA reactivity and vascular metabolite bioavailability were assessed in all groups. Endothelium-dependent dilation of MCA in OZR was attenuated and correlated with the MA slope. Treatment of OZR MCA with TEMPOL (antioxidant) improved dilation in low or medium MA groups, but had less impact on high MA. Alternatively, treatment with gadolinium to normalize MA in OZR had reduced impact on dilator reactivity in MCA from low and medium MA groups, but improved responses in the high group. Treatment with both agents resulted in dilator responses that were comparable across all groups. These results suggest that, under conditions with stronger MA, endothelial function may receive some protection despite the environment, potentially from the ability of MCA to reduce wall tension despite increased pressure.


Subject(s)
Cerebrovascular Circulation , Endothelium, Vascular/physiopathology , Metabolic Syndrome/physiopathology , Middle Cerebral Artery/physiopathology , Muscle, Smooth, Vascular/physiopathology , Vascular Resistance , Vasodilation , Animals , Antioxidants/pharmacology , Cerebrovascular Circulation/drug effects , Disease Models, Animal , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Male , Metabolic Syndrome/metabolism , Middle Cerebral Artery/drug effects , Middle Cerebral Artery/metabolism , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Rats, Zucker , Vascular Resistance/drug effects , Vasodilation/drug effects , Vasodilator Agents/pharmacology
4.
Article in English | MEDLINE | ID: mdl-32404236

ABSTRACT

The present study assessed the effect of nearby construction activity on the responses of rat middle cerebral arteries (MCA)to the endothelium-dependent vasodilator acetylcholine and the NO donor sodium nitroprusside (SNP) and the activity of MaxiK potassium channels in MCA smooth muscle cells from male Sprague-Dawley rats. Two monitoring systems were used to assess vibrations in the animal rooms during and immediately after construction activities near the research building where the animal facility is located. One was a commercially available system; the other was a Raspberry-Pi (RPi)-based vibration monitoring system designed in our laboratory that included a small computing unit attached to a rolling sensor (low sensitivity) and a piezoelectric film sensor (high sensitivity). Both systems recorded increased levels of vibration during construction activity outside the building. During the construction period, vasodilator responses to acetylcholine and SNP were abolished, and MaxiK single-channel current opening frequency and open-state probability in cell-attached patches of isolated MCA myocytes were dramatically decreased. Recovery of acetylcholine- and SNP-induced dilation was minimal in MCA from rats studied after completion of construction but housed in the animal facility during construction, whereas responses to acetylcholine and SNP were intact in rats purchased, housed, and studied after construction. Baseline levels of vibration returned after the completion of construction, concomitant with the recovery of normal endothelium-dependent vasodilation to acetylcholine and of NO sensitivity assessed by using SNP in MCA from animals obtained after construction. The results of this study indicate that the vibration associated with nearby construction can have highly disruptive effects on crucial physiologic phenotypes.

5.
PLoS One ; 15(4): e0232067, 2020.
Article in English | MEDLINE | ID: mdl-32324784

ABSTRACT

The heptapeptide angiotensin-(1-7) (Ang-(1-7)) is protective in the cardiovascular system through its induction of vasodilator production and angiogenesis. Despite acting antagonistically to the effects of elevated, pathophysiological levels of angiotensin II (AngII), recent evidence has identified convergent and beneficial effects of low levels of both Ang-(1-7) and AngII. Previous work identified the AngII receptor type I (AT1R) as a component of the protein complex formed when Ang-(1-7) binds its receptor, Mas1. Importantly, pharmacological blockade of AT1R did not alter the effects of Ang-(1-7). Here, we use a novel mutation of AT1RA in the Dahl salt-sensitive (SS) rat to test the hypothesis that interaction between Mas1 and AT1R contributes to proangiogenic Ang-(1-7) signaling. In a model of hind limb angiogenesis induced by electrical stimulation, we find that the restoration of skeletal muscle angiogenesis in SS rats by Ang-(1-7) infusion is impaired in AT1RA knockout rats. Enhancement of endothelial cell (EC) tube formation capacity by Ang-(1-7) is similarly blunted in AT1RA mutant ECs. Transcriptional changes elicited by Ang-(1-7) in SS rat ECs are altered in AT1RA mutant ECs, and tandem mass spectrometry-based proteomics demonstrate that the protein complex formed upon binding of Ang-(1-7) to Mas1 is altered in AT1RA mutant ECs. Together, these data support the hypothesis that interaction between AT1R and Mas1 contributes to proangiogenic Ang-(1-7) signaling.


Subject(s)
Angiotensin I/metabolism , Muscle, Skeletal/blood supply , Peptide Fragments/metabolism , Proto-Oncogene Proteins/metabolism , Receptor, Angiotensin, Type 1/genetics , Receptor, Angiotensin, Type 1/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Electric Stimulation , Male , Mass Spectrometry , Models, Animal , Muscle, Skeletal/metabolism , Mutation , Neovascularization, Physiologic , Proteomics , Proto-Oncogene Mas , Rats , Rats, Inbred Dahl , Signal Transduction
6.
J Vis Exp ; (155)2020 01 19.
Article in English | MEDLINE | ID: mdl-32009652

ABSTRACT

When investigating the body's mechanisms for regulating cerebral blood flow, a relative measurement of microcirculatory blood flow can be obtained using laser Doppler flowmetry (LDF). This paper demonstrates a closed skull preparation that allows cerebral blood flow to be assessed without penetrating the skull or installing a chamber or cerebral window. To evaluate autoregulatory mechanisms, a model of controlled blood pressure reduction via graded hemorrhage can be utilized while simultaneously employing LDF. This enables the real time tracking of the relative changes in the blood flow in response to reductions in arterial blood pressure produced by the withdrawal of circulating blood volume. This paradigm is a valuable approach to study cerebral blood flow autoregulation during reductions in arterial blood pressure and, with minor modifications in the protocol, is also valuable as an experimental model of hemorrhagic shock. In addition to evaluating autoregulatory responses, LDF can be used to monitor the cortical blood flow when investigating metabolic, myogenic, endothelial, humoral, or neural mechanisms that regulate cerebral blood flow and the impact of various experimental interventions and pathological conditions on cerebral blood flow.


Subject(s)
Cerebrovascular Circulation/physiology , Homeostasis , Laser-Doppler Flowmetry/methods , Anesthesia , Animals , Arteries/physiopathology , Blood Pressure/physiology , Hemorrhage/physiopathology , Homeostasis/physiology , Lasers , Male , Microcirculation/physiology , Rats, Sprague-Dawley
7.
Microcirculation ; 26(7): e12575, 2019 10.
Article in English | MEDLINE | ID: mdl-31132190

ABSTRACT

HYPOTHESIS: This study tested the hypothesis that dietary activation of the master antioxidant and cell protective transcription factor nuclear factor, erythroid -2-like 2 (NRF2), protects against salt-induced vascular dysfunction by restoring redox homeostasis in the vasculature. METHODS: Male Sprague-Dawley rats and Syrian hamsters were fed a HS (4.0% NaCl) diet containing ~60 mg/kg/day Protandim supplement for 2 weeks and compared to controls fed HS diet alone. RESULTS: Protandim supplementation restoredendothelium-dependent vasodilation in response to acetylcholine (ACh) in middle cerebral arteries (MCA)of HS-fed rats and hamster cheek pouch arterioles, and increased microvessel density in the cremastermuscle of HS-fed rats. The restored dilation to ACh in MCA of Protandim-treated rats was prevented by inhibiting nitric oxide synthase (NOS) with L-NAME [100 µM] and was absent in MCA from Nrf2(-/-) knockout rats fed HS diet. Basilar arteries from HS-fed rats treated with Protandim exhibited significantly lower staining for mitochondrial oxidizing species than untreated animals fed HS diet alone; and Protandim treatment increased MnSOD (SOD2) protein expression in mesenteric arteries of HS-fed rats. CONCLUSIONS: These results suggest that dietary activation of NRF2 protects against salt-induced vascular dysfunction, vascular oxidative stress, and microvascular rarefaction by upregulating antioxidant defenses and reducing mitochondrial ROS levels.


Subject(s)
Drugs, Chinese Herbal/pharmacology , NF-E2-Related Factor 2/metabolism , Sodium Chloride, Dietary/adverse effects , Vascular Diseases , Vasodilation/drug effects , Animals , Arterioles , Gene Expression Regulation, Developmental/drug effects , Male , Mesenteric Arteries/metabolism , Mesenteric Arteries/physiopathology , Mesocricetus , Microcirculation/drug effects , Middle Cerebral Artery/metabolism , Middle Cerebral Artery/physiopathology , Rats , Rats, Sprague-Dawley , Sodium Chloride, Dietary/pharmacology , Superoxide Dismutase/biosynthesis , Vascular Diseases/chemically induced , Vascular Diseases/metabolism , Vascular Diseases/physiopathology
8.
Microcirculation ; 26(3): e12518, 2019 04.
Article in English | MEDLINE | ID: mdl-30481399

ABSTRACT

OBJECTIVES: This study sought to determine whether salt-induced ANG II suppression contributes to impaired CBF autoregulation. METHODS: Cerebral autoregulation was evaluated with LDF during graded reductions of blood pressure. Autoregulatory responses in rats fed HS (4% NaCl) diet vs LS (0.4% NaCl) diet were analyzed using linear regression analysis, model-free analysis, and a mechanistic theoretical model of blood flow through cerebral arterioles. RESULTS: Autoregulation was intact in LS-fed animals as MAP was reduced via graded hemorrhage to approximately 50 mm Hg. Short-term (3 days) and chronic (4 weeks) HS diet impaired CBF autoregulation, as evidenced by progressive reductions of laser Doppler flux with arterial pressure reduction. Chronic low dose ANG II infusion (5 mg/kg/min, i.v.) restored CBF autoregulation between the pre-hemorrhage MAP and 50 mm Hg in rats fed short-term HS diet. Mechanistic-based model analysis showed a reduced myogenic response and reduced baseline VSM tone with short-term HS diet, which was restored by ANG II infusion. CONCLUSIONS: Short-term and chronic HS diet lead to impaired autoregulation in the cerebral circulation, with salt-induced ANG II suppression as a major factor in the initiation of impaired CBF regulation.


Subject(s)
Angiotensin II/metabolism , Blood Pressure/drug effects , Cerebral Arteries/physiopathology , Cerebrovascular Circulation/drug effects , Sodium Chloride, Dietary/pharmacology , Animals , Blood Flow Velocity/drug effects , Rats , Rats, Sprague-Dawley
10.
J Am Soc Nephrol ; 29(8): 2081-2088, 2018 08.
Article in English | MEDLINE | ID: mdl-29921718

ABSTRACT

Background Histologic examination of fixed renal tissue is widely used to assess morphology and the progression of disease. Commonly reported metrics include glomerular number and injury. However, characterization of renal histology is a time-consuming and user-dependent process. To accelerate and improve the process, we have developed a glomerular localization pipeline for trichrome-stained kidney sections using a machine learning image classification algorithm.Methods We prepared 4-µm slices of kidneys from rats of various genetic backgrounds that were subjected to different experimental protocols and mounted the slices on glass slides. All sections used in this analysis were trichrome stained and imaged in bright field at a minimum resolution of 0.92 µm per pixel. The training and test datasets for the algorithm comprised 74 and 13 whole renal sections, respectively, totaling over 28,000 glomeruli manually localized. Additionally, because this localizer will be ultimately used for automated assessment of glomerular injury, we assessed bias of the localizer for preferentially identifying healthy or damaged glomeruli.Results Localizer performance achieved an average precision and recall of 96.94% and 96.79%, respectively, on whole kidney sections without evidence of bias for or against glomerular injury or the need for manual preprocessing.Conclusions This study presents a novel and robust application of convolutional neural nets for the localization of glomeruli in healthy and damaged trichrome-stained whole-renal section mounts and lays the groundwork for automated glomerular injury scoring.


Subject(s)
Azo Compounds/pharmacology , Eosine Yellowish-(YS)/pharmacology , Kidney Diseases/pathology , Kidney Glomerulus/pathology , Methyl Green/pharmacology , Tissue Culture Techniques/methods , Algorithms , Animals , Biopsy, Needle , Immunohistochemistry , Rats , Reference Values , Staining and Labeling/methods
11.
Am J Physiol Heart Circ Physiol ; 315(3): H718-H730, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29906224

ABSTRACT

The goal of the present study was to examine the effect of 1 wk of high salt (HS) intake and the role of oxidative stress in changing the mechanisms of flow-induced dilation (FID) in isolated pressurized middle cerebral arteries of male Sprague-Dawley rats ( n = 15-16 rats/group). Reduced FID in the HS group was restored by intake of the superoxide scavenger tempol (HS + tempol in vivo group). The nitric oxide (NO) synthase inhibitor Nω-nitro-l-arginine methyl ester, cyclooxygenase inhibitor indomethacin, and selective inhibitor of microsomal cytochrome P-450 epoxidase activity N-(methylsulfonyl)-2-(2-propynyloxy)-benzenehexanamide significantly reduced FID in the low salt diet-fed group, whereas FID in the HS group was mediated by NO only. Cyclooxygenase-2 mRNA (but not protein) expression was decreased in the HS and HS + tempol in vivo groups. Hypoxia-inducible factor-1α and VEGF protein levels were increased in the HS group but decreased in the HS + tempol in vivo group. Assessment by direct fluorescence of middle cerebral arteries under flow revealed significantly reduced vascular NO levels and increased superoxide/reactive oxygen species levels in the HS group. These results suggest that HS intake impairs FID and changes FID mechanisms to entirely NO dependent, in contrast to the low-salt diet-fed group, where FID is NO, prostanoid, and epoxyeicosatrienoic acid dependent. These changes were accompanied by increased lipid peroxidation products in the plasma of HS diet-fed rats, increased vascular superoxide/reactive oxygen species levels, and decreased NO levels, together with increased expression of hypoxia-inducible factor-1α and VEGF. NEW & NOTEWORTHY High-salt (HS) diet changes the mechanisms of flow-induced dilation in rat middle cerebral arteries from a combination of nitric oxide-, prostanoid-, and epoxyeicosatrienoic acid-dependent mechanisms to, albeit reduced, a solely nitric oxide-dependent dilation. In vivo reactive oxygen species scavenging restores flow-induced dilation in HS diet-fed rats and ameliorates HS-induced increases in the transcription factor hypoxia-inducible factor-1α and expression of its downstream target genes.


Subject(s)
Cerebrovascular Circulation , Middle Cerebral Artery/drug effects , Sodium, Dietary/pharmacology , Vasodilation , Animals , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Cyclooxygenase Inhibitors/pharmacology , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Indomethacin/pharmacology , Male , Middle Cerebral Artery/metabolism , Middle Cerebral Artery/physiology , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide/metabolism , Rats , Rats, Sprague-Dawley , Superoxides/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
13.
J Vis Exp ; (130)2017 12 05.
Article in English | MEDLINE | ID: mdl-29286398

ABSTRACT

This protocol describes the use of in vitro television microscopy to evaluate vascular function in isolated cerebral resistance arteries (and other vessels), and describes techniques for evaluating tissue perfusion using Laser Doppler Flowmetry (LDF) and microvessel density utilizing fluorescently labeled Griffonia simplicifolia (GS1) lectin. Current methods for studying isolated resistance arteries at transmural pressures encountered in vivo and in the absence of parenchymal cell influences provide a critical link between in vivo studies and information gained from molecular reductionist approaches that provide limited insight into integrative responses at the whole animal level. LDF and techniques to selectively identify arterioles and capillaries with fluorescently-labeled GS1 lectin provide practical solutions to enable investigators to extend the knowledge gained from studies of isolated resistance arteries. This paper describes the application of these techniques to gain fundamental knowledge of vascular physiology and pathology in the rat as a general experimental model, and in a variety of specialized genetically engineered "designer" rat strains that can provide important insight into the influence of specific genes on important vascular phenotypes. Utilizing these valuable experimental approaches in rat strains developed by selective breeding strategies and new technologies for producing gene knockout models in the rat, will expand the rigor of scientific premises developed in knockout mouse models and extend that knowledge to a more relevant animal model, with a well understood physiological background and suitability for physiological studies because of its larger size.


Subject(s)
Microscopy, Video/methods , Vascular Resistance/physiology , Animals , Arteries/physiology , Male , Models, Animal , Rats
14.
Arterioscler Thromb Vasc Biol ; 37(3): 433-445, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28082260

ABSTRACT

OBJECTIVE: Angiotensin II (AngII) has been shown to regulate angiogenesis and at high pathophysiological doses to cause vasoconstriction through the AngII receptor type 1. Angiotensin 1 to 7 (Ang-(1-7)) acting through the Mas1 receptor can act antagonistically to high pathophysiological levels of AngII by inducing vasodilation, whereas the effects of Ang-(1-7) signaling on angiogenesis are less defined. To complicate the matter, there is growing evidence that a subpressor dose of AngII produces phenotypes similar to Ang-(1-7). APPROACH AND RESULTS: This study shows that low-dose Ang-(1-7), acting through the Mas1 receptor, promotes angiogenesis and vasodilation similar to a low, subpressor dose of AngII acting through AngII receptor type 1. In addition, we show through in vitro tube formation that Ang-(1-7) augments the angiogenic response in rat microvascular endothelial cells. Using proteomic and genomic analyses, downstream components of Mas1 receptor signaling were identified, including Rho family of GTPases, phosphatidylinositol 3-kinase, protein kinase D1, mitogen-activated protein kinase, and extracellular signal-related kinase signaling. Further experimental antagonism of extracellular signal-related kinases 1/2 and p38 mitogen-activated protein kinase signaling inhibited endothelial tube formation and vasodilation when stimulated with equimolar, low doses of either AngII or Ang-(1-7). CONCLUSIONS: These results significantly expand the known Ang-(1-7)/Mas1 receptor signaling pathway and demonstrate an important distinction between the pathological effects of elevated and suppressed AngII compared with the beneficial effects of AngII normalization and Ang-(1-7) administration. The observed convergence of Ang-(1-7)/Mas1 and AngII/AngII receptor type 1 signaling at low ligand concentrations suggests a nuanced regulation in vasculature. These data also reinforce the importance of mitogen-activated protein kinase/extracellular signal-related kinase signaling in maintaining vascular function.


Subject(s)
Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Middle Cerebral Artery/metabolism , Neovascularization, Physiologic , Proto-Oncogene Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Vasodilation , Angiotensin I/pharmacology , Angiotensin II/pharmacology , Angiotensin II Type 1 Receptor Blockers/pharmacology , Animals , Dose-Response Relationship, Drug , Electric Stimulation , Endothelial Cells/drug effects , Endothelium, Vascular/drug effects , Endothelium, Vascular/innervation , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression Regulation , Male , Middle Cerebral Artery/drug effects , Middle Cerebral Artery/innervation , Neovascularization, Physiologic/drug effects , Peptide Fragments/pharmacology , Proto-Oncogene Mas , Proto-Oncogene Proteins/agonists , Rats, Sprague-Dawley , Receptor, Angiotensin, Type 1/drug effects , Receptor, Angiotensin, Type 1/metabolism , Receptors, G-Protein-Coupled/agonists , Signal Transduction/drug effects , Signal Transduction/genetics , Vasodilation/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism
15.
J Vasc Res ; 53(1-2): 105-118, 2016.
Article in English | MEDLINE | ID: mdl-27676088

ABSTRACT

This study investigated the acute effects of angiotensin-(1-7) and AVE0991 on active tone and vasodilator responses to bradykinin and acetylcholine in isolated mesenteric arteries from Sprague-Dawley rats fed a high-salt (HS; 4% NaCl) versus a normal salt (NS; 0.4% NaCl) diet. Angiotensin-(1-7) and AVE0991 elicited relaxation, and angiotensin-(1-7) unmasked vasodilator responses to bradykinin in arteries from HS-fed rats. These effects of angiotensin-(1-7) and AVE0991 were inhibited by endothelium removal, A779, PD123319, HOE140 and L-NAME. Angiotensin-(1-7) also restored the acetylcholine-induced relaxation that was suppressed by the HS diet. Vasodilator responses to bradykinin and acetylcholine in the presence of angiotensin-(1-7) were mimicked by captopril and the AT2 receptor agonist CGP42112 in arteries from HS-fed rats. Thus, in contrast to salt-induced impairment of vascular relaxation in response to vasodilator stimuli, angiotensin-(1-7) induces endothelium-dependent and NO-mediated relaxation, unmasks bradykinin responses via activation of mas and AT2 receptors, and restores acetylcholine-induced vasodilation in HS-fed rats. AT2 receptor activation and angiotensin-converting enzyme (ACE) inhibition shared the ability of angiotensin-(1-7) to enhance bradykinin and acetylcholine responses in HS-fed rats. These findings suggest a therapeutic potential for mas and/or AT2 receptor activation and ACE inhibition in restoring endothelial function impaired by elevated dietary salt intake or other pathological conditions.


Subject(s)
Angiotensin I/pharmacology , Antihypertensive Agents/pharmacology , Endothelium, Vascular/drug effects , Mesenteric Arteries/drug effects , Peptide Fragments/pharmacology , Sodium Chloride, Dietary , Vasodilation/drug effects , Vasodilator Agents/pharmacology , Acetylcholine/pharmacology , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Animals , Bradykinin/pharmacology , Dose-Response Relationship, Drug , Endothelium, Vascular/physiopathology , Imidazoles/pharmacology , In Vitro Techniques , Male , Mesenteric Arteries/physiopathology , Nitric Oxide/metabolism , Proto-Oncogene Mas , Proto-Oncogene Proteins/agonists , Proto-Oncogene Proteins/metabolism , Rats, Sprague-Dawley , Receptor, Angiotensin, Type 2/agonists , Receptor, Angiotensin, Type 2/metabolism , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/drug effects
16.
Microcirculation ; 23(7): 540-548, 2016 10.
Article in English | MEDLINE | ID: mdl-27537772

ABSTRACT

OBJECTIVE: The potential contribution of CYP4A enzymes to endothelial dysfunction in Dahl salt-sensitive rats was determined by comparison to SS-5BN consomic rats having chromosome 5 carrying CYP4A alleles from the BN rat introgressed into the SS genetic background. METHODS: The following experiments were performed in cerebral arteries from HS-fed SS and SS-5BN rats ± the SOD inhibitor DETC and/or the superoxide scavenger Tempol: (i) endothelial function was determined via video microscopy ± acute addition of the CYP4A inhibitor DDMS or Tempol; (ii) vascular oxidative stress was assessed with DHE fluorescence ± acute addition of DDMS, l-NAME, or PEG-SOD; and (iii) CYP4A protein levels were compared by western blotting. RESULTS: In DETC-treated SS-5BN and HS-fed SS rats, (i) DDMS or Tempol ameliorated vascular dysfunction, (ii) DDMS reduced vascular oxidative stress to control levels, (iii) chronic Tempol treatment reduced vascular CYP4A protein expression, and (iv) combined treatment with Tempol and l-NAME prevented the reduction in CYP4A protein expression in MCA of HS-fed SS rats. CONCLUSION: The CYP4A pathway plays a role in vascular dysfunction in SS rats and there appears to be a direct role of reduced NO availability due to salt-induced oxidant stress in upregulating CYP4A enzyme expression.


Subject(s)
Blood Vessels/chemistry , Cytochrome P-450 CYP4A/metabolism , Gene Expression Regulation, Enzymologic , Reactive Oxygen Species/metabolism , Animals , Cerebral Arteries/metabolism , Cerebral Arteries/physiopathology , Endothelium, Vascular/physiopathology , Gene Expression Regulation, Enzymologic/drug effects , Nitric Oxide/metabolism , Nitric Oxide/pharmacology , Oxidative Stress/drug effects , Rats , Rats, Inbred BN , Rats, Inbred Dahl , Reactive Oxygen Species/pharmacology , Sodium Chloride, Dietary/pharmacology , Up-Regulation/drug effects
17.
Am J Physiol Heart Circ Physiol ; 310(4): H478-87, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26637559

ABSTRACT

Nuclear factor (erythroid-derived 2)-like-2 (NRF2) is a master antioxidant and cell protective transcription factor that upregulates antioxidant defenses. In this study we developed a strain of Nrf2 null mutant rats to evaluate the role of reduced NRF2-regulated antioxidant defenses in contributing to endothelial dysfunction and impaired angiogenic responses during salt-induced ANG II suppression. Nrf2(-/-) mutant rats were developed using transcription activator-like effector nuclease technology in the Sprague-Dawley genetic background, and exhibited a 41-bp deletion that included the start codon for Nrf2 and an absence of immunohistochemically detectable NRF2 protein. Expression of mRNA for the NRF2-regulated indicator enzymes heme oxygenase-1, catalase, superoxide dismutase 1, superoxide dismutase 2, and glutathione reductase was significantly lower in livers of Nrf2(-/-) mutant rats fed high salt (HS; 4% NaCl) for 2 wk compared with wild-type controls. Endothelium-dependent dilation to acetylcholine was similar in isolated middle cerebral arteries (MCA) of Nrf2(-/-) mutant rats and wild-type littermates fed low-salt (0.4% NaCl) diet, and was eliminated by short-term (3 days) HS diet in both strains. Low-dose ANG II infusion (100 ng/kg sc) reversed salt-induced endothelial dysfunction in MCA and prevented microvessel rarefaction in wild-type rats fed HS diet, but not in Nrf2(-/-) mutant rats. The results of this study indicate that suppression of NRF2 antioxidant defenses plays an essential role in the development of salt-induced oxidant stress, endothelial dysfunction, and microvessel rarefaction in normotensive rats and emphasize the potential therapeutic benefits of directly upregulating NRF2-mediated antioxidant defenses to ameliorate vascular oxidant stress in humans.


Subject(s)
Endothelium, Vascular/physiopathology , Microcirculation , NF-E2-Related Factor 2/genetics , Oxidative Stress , Acetylcholine/pharmacology , Angiotensin II/pharmacology , Animals , Antioxidants/metabolism , Capillaries/pathology , Gene Knockout Techniques , Immunohistochemistry , Middle Cerebral Artery/drug effects , Rats , Rats, Sprague-Dawley , Translocation, Genetic/drug effects , Up-Regulation/drug effects , Vasoconstrictor Agents/pharmacology , Vasodilator Agents/pharmacology
18.
Am J Physiol Heart Circ Physiol ; 310(4): H488-504, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26702145

ABSTRACT

To determine the impact of progressive elevations in peripheral vascular disease (PVD) risk on microvascular function, we utilized eight rat models spanning "healthy" to "high PVD risk" and used a multiscale approach to interrogate microvascular function and outcomes: healthy: Sprague-Dawley rats (SDR) and lean Zucker rats (LZR); mild risk: SDR on high-salt diet (HSD) and SDR on high-fructose diet (HFD); moderate risk: reduced renal mass-hypertensive rats (RRM) and spontaneously hypertensive rats (SHR); high risk: obese Zucker rats (OZR) and Dahl salt-sensitive rats (DSS). Vascular reactivity and biochemical analyses demonstrated that even mild elevations in PVD risk severely attenuated nitric oxide (NO) bioavailability and caused progressive shifts in arachidonic acid metabolism, increasing thromboxane A2 levels. With the introduction of hypertension, arteriolar myogenic activation and adrenergic constriction were increased. However, while functional hyperemia and fatigue resistance of in situ skeletal muscle were not impacted with mild or moderate PVD risk, blood oxygen handling suggested an increasingly heterogeneous perfusion within resting and contracting skeletal muscle. Analysis of in situ networks demonstrated an increasingly stable and heterogeneous distribution of perfusion at arteriolar bifurcations with elevated PVD risk, a phenomenon that was manifested first in the distal microcirculation and evolved proximally with increasing risk. The increased perfusion distribution heterogeneity and loss of flexibility throughout the microvascular network, the result of the combined effects on NO bioavailability, arachidonic acid metabolism, myogenic activation, and adrenergic constriction, may represent the most accurate predictor of the skeletal muscle microvasculopathy and poor health outcomes associated with chronic elevations in PVD risk.


Subject(s)
Microcirculation , Muscle, Skeletal/blood supply , Peripheral Vascular Diseases/physiopathology , Animals , Arterioles/physiopathology , Fructose/pharmacology , Hypertension, Renal/physiopathology , Muscle, Skeletal/physiopathology , Nitric Oxide/metabolism , Oxygen Consumption/physiology , Perfusion , Rats , Rats, Inbred Dahl , Rats, Inbred SHR , Rats, Sprague-Dawley , Rats, Zucker , Risk Assessment , Sodium, Dietary/pharmacology , Thromboxane A2/metabolism
19.
J Physiol ; 593(24): 5313-24, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26498129

ABSTRACT

KEY POINTS: Recent studies have shown that some of the deleterious effects of a high-salt (HS) diet are independent of elevated blood pressure and are associated with impaired endothelial function. Increased generation of cyclo-oxygenase (COX-1 and COX-2)-derived vasoconstrictor factors and endothelial activation may contribute to impaired vascular relaxation during HS loading. The present study aimed to assess the regulation of microvascular reactivity and to clarify the role of COX-1 and COX-2 in normotensive subjects on a short-term HS diet. The present study demonstrates the important role of COX-1 derived vasoconstrictor metabolites in regulation of microvascular blood flow during a HS diet. These results help to explain how even short-term HS diets may impact upon microvascular reactivity without changes in blood pressure and suggest that a vasoconstrictor metabolite of COX-1 could play a role in this impaired tissue blood flow. ABSTRACT: The present study aimed to assess the effect of a 1-week high-salt (HS) diet on the role of cyclo-oxygenases (COX-1 and COX-2) and the vasoconstrictor prostaglandins, thromboxane A2 (TXA2 ) and prostaglandin F2α (PGF2α ), on skin microcirculatory blood flow, as well as to detect its effect on markers of endothelial activation such as soluble cell adhesion molecules. Young women (n = 54) were assigned to either the HS diet group (N = 30) (∼14 g day(-1) NaCl ) or low-salt (LS) diet group (N = 24) (<2.3 g day(-1) NaCl ) for 7 days. Post-occlusive reactive hyperaemia (PORH) in the skin microcirculation was assessed by laser Doppler flowmetry. Plasma renin activity, plasma aldosterone, plasma and 24 h urine sodium and potassium, plasma concentrations of TXB2 (stable TXA2 metabolite) and PGF2α , soluble cell adhesion molecules and blood pressure were measured before and after the diet protocols. One HS diet group subset received 100 mg of indomethacin (non-selective COX-1 and COX-2 inhibitor), and another HS group subset received 200 mg of celecoxib (selective COX-2 inhibitor) before repeating laser Doppler flowmetry measurements. Blood pressure was unchanged after the HS diet, although it significantly reduced after the LS diet. Twenty-four hour urinary sodium was increased, and plasma renin activity and plasma aldosterone levels were decreased after the HS diet. The HS diet significantly impaired PORH and increased TXA2 but did not change PGF2α levels. Indomethacin restored microcirculatory blood flow and reduced TXA2 . By contrast, celecoxib decreased TXA2 levels but had no significant effects on blood flow. Restoration of of PORH by indomethacin during a HS diet suggests an important role of COX-1 derived vasoconstrictor metabolites in the regulation of microvascular blood flow during HS intake.


Subject(s)
Cyclooxygenase 1/metabolism , Endothelium, Vascular/drug effects , Microcirculation/drug effects , Sodium Chloride, Dietary/adverse effects , Vasodilation/drug effects , Aldosterone/blood , Blood Pressure/drug effects , Cyclooxygenase 2/metabolism , Cyclooxygenase Inhibitors/pharmacology , Diet , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiology , Female , Humans , Potassium/blood , Potassium/urine , Prostaglandins/blood , Renin/blood , Skin/blood supply , Sodium/blood , Sodium/urine , Sodium Chloride, Dietary/administration & dosage , Thromboxane A2/blood , Young Adult
20.
Compr Physiol ; 6(1): 215-54, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26756632

ABSTRACT

Proper function of the vascular endothelium is essential for cardiovascular health, in large part due to its antiproliferative, antihypertrophic, and anti-inflammatory properties. Crucial to the protective role of the endothelium is the production and liberation of nitric oxide (NO), which not only acts as a potent vasodilator, but also reduces levels of reactive oxygen species, including superoxide anion (O2•-). Superoxide anion is highly injurious to the vasculature because it not only scavenges NO molecules, but has other damaging effects, including direct oxidative disruption of normal signaling mechanisms in the endothelium and vascular smooth muscle cells. The renin-angiotensin system plays a crucial role in the maintenance of normal blood pressure. This function is mediated via the peptide hormone angiotensin II (ANG II), which maintains normal blood volume by regulating Na+ excretion. However, elevation of ANG II above normal levels increases O2•- production, promotes oxidative stress and endothelial dysfunction, and plays a major role in multiple disease conditions. Elevated dietary salt intake also leads to oxidant stress and endothelial dysfunction, but these occur in the face of salt-induced ANG II suppression and reduced levels of circulating ANG II. While the effects of abnormally high levels of ANG II have been extensively studied, far less is known regarding the mechanisms of oxidant stress and endothelial dysfunction occurring in response to chronic exposure to abnormally low levels of ANG II. The current article focuses on the mechanisms and consequences of this less well understood relationship among salt, superoxide, and endothelial function.


Subject(s)
Angiotensin II/metabolism , Endothelium, Vascular/metabolism , Hypertension/metabolism , Sodium Chloride, Dietary/metabolism , Superoxides/metabolism , Animals , Endothelium, Vascular/physiology , Humans , Hypertension/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...