Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36622805

ABSTRACT

Remedial investigations of sites contaminated with legacy pollutants like polychlorinated biphenyls (PCBs) have traditionally focused on mapping sediment contamination to develop a site conceptual model and select remedy options. Ignoring dissolved concentrations that drive transport and bioaccumulation often leads to an incomplete assessment of ongoing inputs to the water column and overestimation of potential effectiveness of sediment remediation. Here, we demonstrate the utility of codeployment of passive equilibrium samplers and freshwater mussels as dual lines of evidence to identify ongoing sources of PCBs from eight main tributaries of the Anacostia River in Washington, DC, that has been historically polluted from industrial and other human activities. The freely dissolved PCB concentrations measured using passive samplers tracked well with the accumulation in mussels and allowed predictions of biouptake within a factor of 2 for total PCBs and a factor of 4 for most congeners. One tributary was identified as the primary source of PCBs to the water column and became a focus of additional ongoing investigations. Codeployment of passive samplers and mussels provides strong lines of evidence to refine site conceptual models and identify ongoing sources critical to control to achieve river water quality standards and reduce bioaccumulation in the aquatic food web.

2.
Environ Pollut ; 316(Pt 1): 120490, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36273697

ABSTRACT

Semi-volatile organic compounds like polychlorinated biphenyls (PCBs) undergo diffusive exchange flux between a water body and the overlying air. The magnitude of this exchange can be a substantial component of the overall pollutant mass balance and needs to be determined accurately to identify major pollutant sources to the water body and to plan appropriate remedies. For the PCB-impacted Anacostia River in Washington DC (USA), quantification of air-water exchange has been a major data gap. In the present study, polyethylene passive samplers were used to measure PCB concentrations in air phase at six locations in DC over a period of one year to capture spatial and seasonal variations. Concurrent water phase PCB measurements were used to quantify the direction and magnitude of air-water exchange in the Anacostia River. Two locations had nearly an order of magnitude higher air phase PCB concentrations that could be related to localized sources. Remaining four locations provided similar air phase PCB concentrations that averaged from 270 ± 44 pg/m3 (summer) to 32 ± 4.3 pg/m3 (winter). ∑PCB water-air exchange fluxes were positive across all seasons, with net PCB volatilization of 180 ± 19 g/year from the surface water. Volatilization rate was an order of magnitude lower than previously estimated from a fate and transport model. PCB load from atmospheric deposition based on previous studies in this watershed was an order of magnitude lower than the volatilization rate. Results refuted a long-standing understanding of the air phase serving as a source of PCBs to the river as per the currently approved Total Maximum Daily Load assessment. The study demonstrates the utility of passive air phase measurements in delineating local terrestrial sources of pollution as well as providing estimates for air-water exchange to complete a robust mass balance for semi-volatile pollutants in an urban river.


Subject(s)
Air Pollutants , Environmental Pollutants , Polychlorinated Biphenyls , Water Pollutants, Chemical , Polychlorinated Biphenyls/analysis , Rivers , Seasons , Environmental Monitoring/methods , Air Pollutants/analysis , Water Pollutants, Chemical/analysis , Environmental Pollutants/analysis , Water
3.
Environ Sci Technol ; 48(8): 4353-60, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24625226

ABSTRACT

The time required for a PCB-contaminated site to recover cannot yet be predicted due in part to lack of quantitative information on rates of PCB dechlorination in the porewater phase. We developed a method to measure rate of dechlorination in the aqueous phase at very low PCB concentrations. This approach utilizes a polymer functioning concurrently as a passive dosing system for maintaining a steady-state PCB substrate concentration in the water phase and as a passive equilibrium sampler to monitor the dechlorination product. Rates of dechlorination of 2,3,4,5-tetrachlorobiphenyl (PCB 61) to 2,3,5-trichlorobiphenyl (PCB 23) by an organohalide respiring bacterium, Dehalobium chlorocoercia DF-1, were measured over an environmentally relevant range of 1 to 500 ng L(-1) in sediment-free medium using a high concentration of cells (>10(6) cells mL(-1)). The results indicate that rate of dechlorination is a linear function of PCB substrate concentration below the maximum aqueous solubility of PCB 61 and occurs at concentrations as low as 1 ng L(-1). Demonstration of PCB 61 dechlorination at environmentally relevant concentrations suggests that low numbers of organohalide respiring bacteria rather than bioavailability accounts for low rates of dechlorination typically observed in sediments. Using passive samplers to measure the concentration of dissolved PCBs in the porewater combined with knowledge of congener-specific rates for organohalide respirer(s), it will be possible to project the in situ rate and final concentration of PCBs for a specific site after treatment by bioaugmentation.


Subject(s)
Chloroflexi/metabolism , Halogenation , Polychlorinated Biphenyls/metabolism , Biodegradation, Environmental , Chloroflexi/growth & development , Kinetics , Reproducibility of Results , Resins, Synthetic/chemistry
4.
FEMS Microbiol Ecol ; 78(1): 31-49, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21631545

ABSTRACT

Metagenomics approaches represent an important way to acquire information on the microbial communities present in complex environments like soil. However, to what extent do these approaches provide us with a true picture of soil microbial diversity? Soil is a challenging environment to work with. Its physicochemical properties affect microbial distributions inside the soil matrix, metagenome extraction and its subsequent analyses. To better understand the bias inherent to soil metagenome 'processing', we focus on soil physicochemical properties and their effects on the perceived bacterial distribution. In the light of this information, each step of soil metagenome processing is then discussed, with an emphasis on strategies for optimal soil sampling. Then, the interaction of cells and DNA with the soil matrix and the consequences for microbial DNA extraction are examined. Soil DNA extraction methods are compared and the veracity of the microbial profiles obtained is discussed. Finally, soil metagenomic sequence analysis and exploitation methods are reviewed.


Subject(s)
DNA, Bacterial/analysis , DNA, Fungal/analysis , Metagenomics/methods , Soil Microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/growth & development , Biodiversity , Ecosystem , Fungi/classification , Fungi/genetics , Fungi/growth & development , Genetic Variation , Sequence Analysis, DNA , Soil/chemistry
5.
J Microbiol Methods ; 62(1): 1-11, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15823390

ABSTRACT

Soil is a complex environment considered as one of the main reservoirs of microbial diversity. However, the inability to cultivate most soil bacteria hampered fundamental attempts to determine the diversity of the prokaryotic world and limited its industrial exploitation. In the last 20 years, new methods have been developed to overcome these limitations based on the direct extraction of DNA from bacteria in their natural environment. In addition to fundamental research, the cloning of the extracted DNA for the development of metagenomic DNA clone libraries offers possibilities to discover novel bio-molecules through the expression of genes from uncultivated bacteria in surrogate bacterial hosts. However, such objectives require adapting DNA extraction methods and cloning strategies in order that entire gene clusters encoding biosynthetic pathway for secondary metabolites can be cloned. In this paper, we report that the size of DNA fragments extracted from soil varied in a range between less than 100 kb and more than 400 kb depending on the soil. The relatively limited size of DNA fragments extracted from some soil was not only due to mechanical, chemical or enzymatic shearing of the DNA during the extraction process but partly to the microbial growth status. Stimulating bacteria in situ by providing nutrients to the soil improved the size of extracted DNA, but it modified the bacterial community structure.


Subject(s)
Bacteria/genetics , DNA, Bacterial/isolation & purification , Genome, Bacterial , Soil Microbiology , Bacteria/chemistry , Bacteria/isolation & purification , DNA Fingerprinting , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , Electrophoresis, Gel, Pulsed-Field , Genomic Library , Molecular Weight , Polymerase Chain Reaction , Principal Component Analysis , RNA, Ribosomal, 16S/chemistry , RNA, Ribosomal, 16S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...