Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Org Lett ; 25(38): 6969-6974, 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37669466

ABSTRACT

A carbonylation-carboxylation synthetic sequence, via double CO2 fixation, is described. The productive merger of a Ni-catalyzed cross-electrophile coupling manifold, with the use of AlCl3, triggered a cascade reaction with the formation of three consecutive C-C bonds in a single operation. This strategy traces an unprecedented synthetic route to ketones under Lewis acid assisted carbon dioxide valorization. Computational insights revealed a unique double function of AlCl3, and labeling (13CO2) experiments validate the genuine incorporation of CO2 in both functional groups.

2.
J Neural Eng ; 20(4)2023 07 25.
Article in English | MEDLINE | ID: mdl-37419109

ABSTRACT

Objective.Transcutaneous spinal cord stimulation (tSCS) has been gaining momentum as a non-invasive rehabilitation approach to restore movement to paralyzed muscles after spinal cord injury (SCI). However, its low selectivity limits the types of movements that can be enabled and, thus, its potential applications in rehabilitation.Approach.In this cross-over study design, we investigated whether muscle recruitment selectivity of individual muscles could be enhanced by multielectrode configurations of tSCS in 16 neurologically intact individuals. We hypothesized that due to the segmental innervation of lower limb muscles, we could identify muscle-specific optimal stimulation locations that would enable improved recruitment selectivity over conventional tSCS. We elicited leg muscle responses by delivering biphasic pulses of electrical stimulation to the lumbosacral enlargement using conventional and multielectrode tSCS.Results.Analysis of recruitment curve responses confirmed that multielectrode configurations could improve the rostrocaudal and lateral selectivity of tSCS. To investigate whether motor responses elicited by spatially selective tSCS were mediated by posterior root-muscle reflexes, each stimulation event was a paired pulse with a conditioning-test interval of 33.3 ms. Muscle responses to the second stimulation pulse were significantly suppressed, a characteristic of post-activation depression suggesting that spatially selective tSCS recruits proprioceptive fibers that reflexively activate muscle-specific motor neurons in the spinal cord. Moreover, the combination of leg muscle recruitment probability and segmental innervation maps revealed a stereotypical spinal activation map in congruence with each electrode's position.Significance. Improvements in muscle recruitment selectivity could be essential for the effective translation into stimulation protocols that selectively enhance single-joint movements in neurorehabilitation.


Subject(s)
Spinal Cord Injuries , Spinal Cord Stimulation , Humans , Spinal Cord Stimulation/methods , Cross-Over Studies , Spinal Cord/physiology , Spinal Cord Injuries/rehabilitation , Muscle, Skeletal/physiology
3.
J Colloid Interface Sci ; 648: 46-55, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37295369

ABSTRACT

Hypothesis Nonaqueous foams are found in a variety of applications, many of which contain volatile components that need to be removed during processing. Sparging air bubbles into the liquid can be used to aid in their removal, but the resulting foam can be stabilized or destabilized by several different mechanisms, the relative importance of which are not yet fully understood. Investigating the dynamics of thin film drainage, four competing mechanisms can be observed, such as solvent evaporation, film viscosification, and thermal and solutocapillary Marangoni flows. Experiments Experimental studies with isolated bubbles and/or bulk foams are needed to strengthen the fundamental knowledge of these systems. This paper presents interferometric measurements of the dynamic evolution of a film formed by a bubble rising to an air-liquid interface to shed light on this situation. Two different solvents with different degrees of volatility were investigated to reveal both qualitative and quantitative details on thin film drainage mechanisms in polymer-volatile mixtures. Findings Using interferometry, we found evidence that solvent evaporation and film viscosification both strongly influence the stability of interface. These findings were corroborated by comparison with bulk foam measurements, revealing a strong correlation between these two systems.

4.
bioRxiv ; 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37034788

ABSTRACT

Objective: Transcutaneous spinal cord stimulation (tSCS) has been gaining momentum as a non-invasive rehabilitation approach to restore movement to paralyzed muscles after spinal cord injury (SCI). However, its low selectivity limits the types of movements that can be enabled and, thus, its potential applications in rehabilitation. Approach: In this cross-over study design, we investigated whether muscle recruitment selectivity of individual muscles could be enhanced by multielectrode configurations of tSCS in 16 neurologically intact individuals. We hypothesized that due to the segmental innervation of lower limb muscles, we could identify muscle-specific optimal stimulation locations that would enable improved recruitment selectivity over conventional tSCS. We elicited leg muscle responses by delivering biphasic pulses of electrical stimulation to the lumbosacral enlargement using conventional and multielectrode tSCS. Results: Analysis of recruitment curve responses confirmed that multielectrode configurations could improve the rostrocaudal and lateral selectivity of tSCS. To investigate whether motor responses elicited by spatially selective tSCS were mediated by posterior root-muscle reflexes, each stimulation event was a paired pulse with a conditioning-test interval of 33.3 ms. Muscle responses to the second stimulation pulse were significantly suppressed, a characteristic of post-activation depression suggesting that spatially selective tSCS recruits proprioceptive fibers that reflexively activate muscle-specific motor neurons in the spinal cord. Moreover, the combination of leg muscle recruitment probability and segmental innervation maps revealed a stereotypical spinal activation map in congruence with each electrode's position. Significance: Improvements in muscle recruitment selectivity could be essential for the effective translation into stimulation protocols that selectively enhance single-joint movements in neurorehabilitation.

5.
Angew Chem Int Ed Engl ; 61(47): e202211732, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36161744

ABSTRACT

A nickel-catalyzed reductive cross-electrophile coupling between the redox-active N-trifluoroethoxyphthalimide and iodoarenes is documented. The protocol reproduces a formal arylation of trifluoroacetaldehyde under mild conditions in high yields (up to 88 %) and with large functional group tolerance (30 examples). A combined computational and experimental investigation revealed a pivotal solvent assisted 1,2-Hydrogen Atom Transfer (HAT) process to generate a nucleophilic α-hydroxy-α-trifluoromethyl C-centered radical for the Csp2 -Csp3 bond forming process.


Subject(s)
Alcohols , Nickel , Nickel/chemistry , Catalysis , Oxidation-Reduction
6.
J Neuroeng Rehabil ; 19(1): 68, 2022 07 04.
Article in English | MEDLINE | ID: mdl-35787721

ABSTRACT

BACKGROUND: Cybathlon championship aims at promoting the development of prosthetic and assistive devices capable to meet users' needs. This paper describes and analyses possible exploitation outcomes of our team's (REHAB TECH) experience into the Powered Arm Prosthesis Race of the Cybathlon 2020 Global Edition, with the novel prosthetic system Hannes. In detail, we present our analysis on a concurrent evaluation conducted to verify if the Cybathlon training and competition positively influenced pilot's performance and human-technology integration with Hannes, with respect to a non-runner Hannes user. METHODS: Two transradial amputees were recruited as pilots (Pilot 1 and Pilot 2) for the Cybathlon competition and were given the polyarticulated myoelectric prosthetic hand Hannes. Due to COVID-19 emergency, only Pilot 1 was trained for the race. However, both pilots kept Hannes for Home Use for seven weeks. Before this period, they both participated to the evaluation of functionality, embodiment, and user experience (UX) related to Hannes, which they repeated at the end of the Home Use and right after the competition. We analysed Pilot 1's training and race outcomes, as well as changes in the concurrent evaluation, and compared these results with Pilot 2's ones. RESULTS: The Cybathlon training gradually improved Pilot 1's performances, leading to the sixth place with a single error in task 5. In the parallel evaluation, both pilots had an overall improvement over time, whereas Pilot 2 experienced a deterioration of embodiment. In detail, Pilot 1, who followed the training and raced the Cybathlon, improved in greater way. CONCLUSION: Hannes demonstrated to be a valuable competitor and to perform grasps with human-like behaviors. The higher improvements of Pilot 1, who actively participated in the Cybathlon, in terms of functionality, embodiment and UX, may depend on his training and engagement in the effort of achieving a successful user-prosthesis interaction during the competition. Tasks based on Cybathlon's ones could improve the training phase of a prosthetic user, stimulating dexterity, prosthetic integration, and user perception towards the prosthesis. Likewise, timed races or competitions could facilitate and accelerate the learning phase, improving the efficiency and efficacy of the process.


Subject(s)
Amputees , Artificial Limbs , COVID-19 , Hand , Humans , Upper Extremity
7.
Chem Commun (Camb) ; 58(25): 4071-4074, 2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35262541

ABSTRACT

A carboxylative Ni-catalyzed tandem C-C σ-bond activation of cyclobutanones followed by CO2-electrophilic trapping is documented as a direct route to synthetically valuable 3-indanone-1-acetic acids. The protocol shows an adequate functional group tolerance and useful chemical outcomes (yield up to 76%) when AlCl3 is adopted as an additive. Manipulations of the targeted cyclic scaffolds and a mechanistic proposal based on experimental evidence complete the investigation.


Subject(s)
Carbon Dioxide , Carbon Dioxide/chemistry , Catalysis
8.
Chemistry ; 28(26): e202200333, 2022 May 06.
Article in English | MEDLINE | ID: mdl-35319124

ABSTRACT

We present an environmentally benign methodology for the covalent functionalization (arylation) of reduced graphene oxide (rGO) nanosheets with arylazo sulfones. A variety of tagged aryl units were conveniently accommodated at the rGO surface via visible-light irradiation of suspensions of carbon nanostructured materials in aqueous media. Mild reaction conditions, absence of photosensitizers, functional group tolerance and high atomic fractions (XPS analysis) represent some of the salient features characterizing the present methodology. Control experiments for the mechanistic elucidation (Raman analysis) and chemical nanomanipulation of the tagged rGO surfaces are also reported.

9.
Org Lett ; 23(11): 4441-4446, 2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34032451

ABSTRACT

The visible-light photoredox/[Co(III)] cocatalyzed dehydrogenative functionalization of cyclic and acyclic styryl derivatives with carboxylic acids is documented. The methodology enables the chemo- and regioselective allylic functionalization of styryl compounds, leading to allylic carboxylates (32 examples) under stoichiometric acceptorless conditions. Intermolecular as well as intramolecular variants are documented in high yields (up to 82%). A mechanistic rationale is also proposed on the basis of a combined experimental and spectroscopic investigation.

10.
J Colloid Interface Sci ; 596: 493-499, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-33857823

ABSTRACT

HYPOTHESIS: Thin liquid films are important in many scientific fields. In particular, films with both the surface layers exposed to a different fluid phase, known as freestanding films, are relevant in the ambit of foams and emulsions. Hence, there is a great interest in developing novel techniques allowing to form large and stable freestanding liquid films and to follow their dynamics. EXPERIMENTS: We develop a novel opto-mechanical tool allowing to perform and study the preparation and the capillary leveling flow of axisymmetric bare freestanding liquid films. The tool is composed by a customized motorized iris diaphragm and by an innovative joint imaging setup combining digital holography and white light color interferometry that enables real-time measurement of film thickness over a large field of view. The dynamics of films made of a model Newtonian fluid, i.e., high-viscosity silicone oil, is studied. Direct numerical simulations and a hydrodynamic model based on the lubrication theory are used to support the experimental results. FINDINGS: Iris opening induces the formation of large circular freestanding films with a stepped profile. Once iris opening is stopped, the films undergo a capillary leveling flow tending to flatten their profile. The leveling flow follows the theoretical scaling given by Ilton et al. [1]. We prove through numerical simulations that an equi-biaxial extensional flow occurs at the film center. Furthermore, we observe the formation and dynamics of dimples in bare freestanding films for the first time.

11.
Polymers (Basel) ; 13(7)2021 Apr 04.
Article in English | MEDLINE | ID: mdl-33916594

ABSTRACT

Optimization of post polymerization processes of polyolefin elastomers (POE) involving solvents is of considerable industrial interest. To this aim, experimental determination and theoretical interpretation of the thermodynamics and mass transport properties of POE-solvent mixtures is relevant. Sorption behavior of n-hexane vapor in a commercial propylene-ethylene elastomer (V8880 VistamaxxTM from ExxonMobil, Machelen, Belgium) is addressed here, determining experimentally the sorption isotherms at temperatures ranging from 115 to 140 °C and pressure values of n-hexane vapor up to 1 atm. Sorption isotherms have been interpreted using a Non Random Lattice Fluid (NRLF) Equation of State model retrieving, from data fitting, the value of the binary interaction parameter for the n-hexane/V8880 system. Both the cases of temperature-independent and of temperature-dependent binary interaction parameter have been considered. Sorption kinetics was also investigated at different pressures and has been interpreted using a Fick's model determining values of the mutual diffusivity as a function of temperature and of n-hexane/V8880 mixture composition. From these values, n-hexane intra-diffusion coefficient has been calculated interpreting its dependence on mixture concentration and temperature by a semi-empiric model based on free volume arguments.

12.
Angew Chem Int Ed Engl ; 59(47): 20767-20778, 2020 Nov 16.
Article in English | MEDLINE | ID: mdl-32516475

ABSTRACT

Graphene oxide (GO) is experiencing growing interest by synthetic organic chemists as a promoter of chemical transformations. The synergistic role of the multiple functionalities featuring the nanostructured carbon materials and their π-domains enables the interplay of specific activation modes towards organic compounds that can explore unprecedented chemical modifications. A detailed comprehension of the mechanistic details that govern the transformations guided by GO is a not fully solved task in the field. In this direction, more sophisticated and diversified techniques are employed, providing insights towards intriguing activation modes exerted by the π-matrix and the oxygenated/sulfonate groups decorating the functionalized nano-carbon material. The present Minireview accounts for a critical survey of the most recent developments in the area of GO-mediated organic transformations with a specific focus on mechanist aspects.

13.
Chemistry ; 26(46): 10427-10432, 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32346922

ABSTRACT

The site-selective allylative and allenylative dearomatization of indoles with alcohols was performed under carbocatalytic regime in the presence of graphene oxide (GO, 10 wt % loading) as the promoter. Metal-free conditions, absence of stoichiometric additive, environmentally friendly conditions (H2 O/CH3 CN, 55 °C, 6 h), broad substrate scope (33 examples, yield up to 92 %) and excellent site- and stereoselectivity characterize the present methodology. Moreover, a covalent activation model exerted by GO functionalities was corroborated by spectroscopic, experimental and computational evidences. Recovering and regeneration of the GO catalyst through simple acidic treatment was also documented.

14.
Org Lett ; 20(23): 7380-7383, 2018 12 07.
Article in English | MEDLINE | ID: mdl-30417649

ABSTRACT

A new catalytic methodology for the direct dearomatization of substituted 2-naphthols via intermolecular condensation with allenamides is presented. PPh3AuTFA (5 mol %) promotes the formal allylating dearomative protocol under mild conditions, large scope (24 examples), and high regioselectivity and stereoselectivity. The synergistic catalytic role played by the [PPh3Au]+ (π-acid) and TFA- (Lewis base) is highlighted.

SELECTION OF CITATIONS
SEARCH DETAIL
...