Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 5142, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429296

ABSTRACT

The bin packing is a well-known NP-Hard problem in the domain of artificial intelligence, posing significant challenges in finding efficient solutions. Conversely, recent advancements in quantum technologies have shown promising potential for achieving substantial computational speedup, particularly in certain problem classes, such as combinatorial optimization. In this study, we introduce QAL-BP, a novel Quadratic Unconstrained Binary Optimization (QUBO) formulation designed specifically for bin packing and suitable for quantum computation. QAL-BP utilizes the Augmented Lagrangian method to incorporate the bin packing constraints into the objective function while also facilitating an analytical estimation of heuristic, but empirically robust, penalty multipliers. This approach leads to a more versatile and generalizable model that eliminates the need for empirically calculating instance-dependent Lagrangian coefficients, a requirement commonly encountered in alternative QUBO formulations for similar problems. To assess the effectiveness of our proposed approach, we conduct experiments on a set of bin packing instances using a real Quantum Annealing device. Additionally, we compare the results with those obtained from two different classical solvers, namely simulated annealing and Gurobi. The experimental findings not only confirm the correctness of the proposed formulation, but also demonstrate the potential of quantum computation in effectively solving the bin packing problem, particularly as more reliable quantum technology becomes available.

2.
Genes (Basel) ; 14(11)2023 Nov 04.
Article in English | MEDLINE | ID: mdl-38002982

ABSTRACT

Mutations in the 43 kDa transactive-response (TAR)-DNA-binding protein (TARDBP) are associated with 2-5% of familial Amyotrophic Lateral Sclerosis (ALS) cases. TAR DNA-Binding Protein 43 (TDP-43) is an RNA/DNA-binding protein involved in several cellular mechanisms (e.g., transcription, pre-mRNA processing, and splicing). Many ALS-linked TARDBP mutations have been described in the literature, but few phenotypic data on monogenic TARDBP-mutated ALS are available. In this paper, (1) we describe the clinical features of ALS patients carrying mutations in the TARDBP gene evaluated at the Tertiary ALS Center at Maggiore della Carità University Hospital, Novara, Italy, from 2010 to 2020 and (2) present the results of our review of the literature on this topic, analyzing data obtained for 267 patients and highlighting their main clinical and demographic features.


Subject(s)
Amyotrophic Lateral Sclerosis , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Italy , Mutation , Phenotype
3.
Heliyon ; 9(9): e19444, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37810082

ABSTRACT

Down syndrome (DS) or trisomy 21 is the most common genetic cause of intellectual disability (ID), but a pathogenic mechanism has not been identified yet. Studying a complex and not monogenic condition such as DS, a clear correlation between cause and effect might be difficult to find through classical analysis methods, thus different approaches need to be used. The increased availability of big data has made the use of artificial intelligence (AI) and in particular machine learning (ML) in the medical field possible. The purpose of this work is the application of ML techniques to provide an analysis of clinical records obtained from subjects with DS and study their association with ID. We have applied two tree-based ML models (random forest and gradient boosting machine) to the research question: how to identify key features likely associated with ID in DS. We analyzed 109 features (or variables) in 106 DS subjects. The outcome of the analysis was the age equivalent (AE) score as indicator of intellectual functioning, impaired in ID. We applied several methods to configure the models: feature selection through Boruta framework to minimize random correlation; data augmentation to overcome the issue of a small dataset; age effect mitigation to take into account the chronological age of the subjects. The results show that ML algorithms can be applied with good accuracy to identify variables likely involved in cognitive impairment in DS. In particular, we show how random forest and gradient boosting machine produce results with low error (MSE <0.12) and an acceptable R2 (0.70 and 0.93). Interestingly, the ranking of the variables point to several features of interest related to hearing, gastrointestinal alterations, thyroid state, immune system and vitamin B12 that can be considered with particular attention for improving care pathways for people with DS. In conclusion, ML-based model may assist researchers in identifying key features likely correlated with ID in DS, and ultimately, may improve research efforts focused on the identification of possible therapeutic targets and new care pathways. We believe this study can be the basis for further testing/validating of our algorithms with multiple and larger datasets.

SELECTION OF CITATIONS
SEARCH DETAIL
...