Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Transl Med ; 20(1): 290, 2022 06 27.
Article in English | MEDLINE | ID: mdl-35761360

ABSTRACT

BACKGROUND: Triple negative breast cancer (TNBC) is an aggressive disease characterized by high risk of relapse and development of resistance to different chemotherapy agents. Several targeted therapies have been investigated in TNBC with modest results in clinical trials. Among these, PI3K/AKT inhibitors have been evaluated in addition to standard therapies, yielding conflicting results and making attempts on elucidating inherent mechanisms of resistance of great interest. Increasing evidences suggest that PI3K/AKT inhibitors can induce autophagy in different cancers. Autophagy represents a supposed mechanism of drug-resistance in aggressive tumors, like TNBC. We, therefore, investigated if two PI3K/AKT inhibitors, ipatasertib and taselisib, could induce autophagy in breast cancer models, and whether chloroquine (CQ), a well known autophagy inhibitor, could potentiate ipatasertib and taselisib anti-cancer effect in combination with conventional chemotherapy. METHODS: The induction of autophagy after ipatasertib and taselisib treatment was evaluated in MDAMB231, MDAM468, MCF7, SKBR3 and MDAB361 breast cancer cell lines by assaying LC3-I conversion to LC3-II through immunoblotting and immunofluorescence. Other autophagy-markers as p62/SQSTM1 and ATG5 were evaluated by immunoblotting. Synergistic antiproliferative effect of double and triple combinations of ipatasertib/taselisib plus CQ and/or paclitaxel were evaluated by SRB assay and clonogenic assay. Anti-apoptotic effect of double combination of ipatasertib/taselisib plus CQ was evaluated by increased cleaved-PARP by immunoblot and by Annexin V- flow cytometric analysis. In vivo experiments were performed on xenograft model of MDAMB231 in NOD/SCID mice. RESULTS: Our results suggested that ipatasertib and taselisib induce increased autophagy signaling in different breast cancer models. This effect was particularly evident in PI3K/AKT resistant TNBC cells, where the inhibition of autophagy by CQ potentiates the therapeutic effect of PI3K/AKT inhibitors in vitro and in vivo TNBC models, synergizing with taxane-based chemotherapy. CONCLUSION: These data suggest that inhibition of authophagy with CQ could overcome mechanism of drug resistance to PI3K/AKT inhibitors plus paclitaxel in TNBC making the evaluation of such combinations in clinical trials warranted.


Subject(s)
Chloroquine , Drug Resistance, Neoplasm , Phosphoinositide-3 Kinase Inhibitors , Triple Negative Breast Neoplasms , Animals , Autophagy , Cell Line, Tumor , Cell Proliferation , Chloroquine/pharmacology , Chloroquine/therapeutic use , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Triple Negative Breast Neoplasms/drug therapy
2.
Cancers (Basel) ; 14(3)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35158912

ABSTRACT

BACKGROUND: Triple negative breast cancer (TNBC) is a heterogeneous group of tumors with early relapse, poor overall survival, and lack of effective treatments. Hence, new prognostic biomarkers and therapeutic targets are needed. METHODS: The expression profile of all twenty-five human selenoproteins was analyzed in TNBC by a systematic approach.In silicoanalysis was performed on publicly available mRNA expression datasets (Cancer Cell Line Encyclopedia, CCLE and Library of Integrated Network-based Cellular Signatures, LINCS). Reverse transcription quantitative PCR analysis evaluated selenoprotein mRNA expression in TNBC versus non-TNBC and normal breast cells, and in TNBC tissues versus normal counterparts. Immunohistochemistry was employed to study selenoproteins in TNBC tissues. STRING and Cytoscape tools were used for functional and network analysis. RESULTS: GPX1, GPX4, SELENOS, TXNRD1 and TXNRD3 were specifically overexpressed in TNBC cells, tissues and CCLE/LINCS datasets. Network analysis demonstrated that SELENOS-binding valosin-containing protein (VCP/p97) played a critical hub role in the TNBCselenoproteins sub-network, being directly associated with SELENOS expression. The combined overexpression of SELENOS and VCP/p97 correlated with advanced stages and poor prognosis in TNBC tissues and the TCGA dataset. CONCLUSION: Combined evaluation of SELENOS and VCP/p97 might represent a novel potential prognostic signature and a therapeutic target to be exploited in TNBC.

3.
Cancers (Basel) ; 14(3)2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35158962

ABSTRACT

Although fluoropyrimidines were introduced as anticancer agents over 60 years ago, they are still the backbone of many combination chemotherapy regimens for the treatment of solid cancers. Like other chemotherapeutic agents, the therapeutic efficacy of fluoropyrimidines can be affected by drug resistance and severe toxicities; thus, novel therapeutic approaches are required to potentiate their efficacy and overcome drug resistance. In the last 20 years, the deregulation of epigenetic mechanisms has been shown to contribute to cancer hallmarks. Histone modifications play an important role in directing the transcriptional machinery and therefore represent interesting druggable targets. In this review, we focused on histone deacetylase inhibitors (HDACis) that can increase antitumor efficacy and overcome resistance to fluoropyrimidines by targeting specific genes or proteins. Our preclinical data showed a strong synergistic interaction between HDACi and fluoropyrimidines in different cancer models, but the clinical studies did not seem to confirm these observations. Most likely, the introduction of increasingly complex preclinical models, both in vitro and in vivo, cannot recapitulate human complexity; however, our analysis of clinical studies revealed that most of them were designed without a mechanistic approach and, importantly, without careful patient selection.

4.
Mol Oncol ; 15(4): 1005-1023, 2021 04.
Article in English | MEDLINE | ID: mdl-33331136

ABSTRACT

Acquired resistance to platinum (Pt)-based therapies is an urgent unmet need in the management of epithelial ovarian cancer (EOC) patients. Here, we characterized by an unbiased proteomics method three isogenic EOC models of acquired Pt resistance (TOV-112D, OVSAHO, and MDAH-2774). Using this approach, we identified several differentially expressed proteins in Pt-resistant (Pt-res) compared to parental cells and the chaperone HSP90 as a central hub of these protein networks. Accordingly, up-regulation of HSP90 was observed in all Pt-res cells and heat-shock protein 90 alpha isoform knockout resensitizes Pt-res cells to cisplatin (CDDP) treatment. Moreover, pharmacological HSP90 inhibition using two different inhibitors [17-(allylamino)-17-demethoxygeldanamycin (17AAG) and ganetespib] synergizes with CDDP in killing Pt-res cells in all tested models. Mechanistically, genetic or pharmacological HSP90 inhibition plus CDDP -induced apoptosis and increased DNA damage, particularly in Pt-res cells. Importantly, the antitumor activities of HSP90 inhibitors (HSP90i) were confirmed both ex vivo in primary cultures derived from Pt-res EOC patients ascites and in vivo in a xenograft model. Collectively, our data suggest an innovative antitumor strategy, based on Pt compounds plus HSP90i, to rechallenge Pt-res EOC patients that might warrant further clinical evaluation.


Subject(s)
Antineoplastic Agents/therapeutic use , Carcinoma, Ovarian Epithelial/drug therapy , Drug Resistance, Neoplasm , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Ovarian Neoplasms/drug therapy , Platinum/therapeutic use , Animals , Benzoquinones , Cell Line, Tumor , Cisplatin/therapeutic use , Female , Humans , Lactams, Macrocyclic , Mice, Inbred NOD , Mice, Nude , Mice, SCID , Proteomics , Triazoles , Xenograft Model Antitumor Assays
5.
Front Cell Dev Biol ; 8: 732, 2020.
Article in English | MEDLINE | ID: mdl-33015030

ABSTRACT

Recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC) is a devastating malignancy with a poor prognosis. The combination of cisplatin (CDDP) plus cetuximab (CX) is one of the standard first-line treatments in this disease. However, this therapeutic regimen is often associated with high toxicity and resistance, suggesting that new combinatorial strategies are needed to improve its therapeutic index. In our study, we evaluated the antitumor effects of valproic acid (VPA), a well-known antiepileptic agent with histone deacetylase inhibitory activity, in combination with CDDP/CX doublet in head and neck squamous cell carcinoma (HNSCC) models. We demonstrated, in HNSCC cell lines, but not in normal human fibroblasts, that simultaneous exposure to equitoxic doses of VPA plus CDDP/CX resulted in a clear synergistic antiproliferative and pro-apoptotic effects. The synergistic antitumor effect was confirmed in four different 3D-self-assembled spheroid models, suggesting the ability of the combined approach to affect also the cancer stem cells compartment. Mechanistically, VPA enhanced DNA damage in combination treatment by reducing the mRNA expression of ERCC Excision Repair 1, a critical player in DNA repair, and by increasing CDDP intracellular concentration via upregulation at transcriptional level of CDDP influx channel copper transporter 1 and downregulation of the ATPAse ATP7B involved in CDDP-export. Valproic acid also induced a dose-dependent downregulation of epidermal growth factor receptor (EGFR) expression and of MAPK and AKT downstream signaling pathways and prevent CDDP- and/or CX-induced EGFR nuclear translocation, a well-known mechanism of resistance to chemotherapy. Indeed, VPA impaired the transcription of genes induced by non-canonical activity of nuclear EGFR, such as cyclin D1 and thymidylate synthase. Finally, we confirmed the synergistic antitumor effect also in vivo in both heterotopic and orthotopic models, demonstrating that the combined treatment completely blocked HNSCC xenograft tumors growth in nude mice. Overall, the introduction of a safe and generic drug such as VPA into the conventional treatment for R/M HNSCC represents an innovative and feasible antitumor strategy that warrants further clinical evaluation. A phase II clinical trial exploring the combination of VPA and CDDP/CX in R/M HNSCC patients is currently ongoing in our institute.

6.
J Exp Clin Cancer Res ; 39(1): 213, 2020 Oct 08.
Article in English | MEDLINE | ID: mdl-33032653

ABSTRACT

BACKGROUND: Despite the introduction of several novel therapeutic approaches that improved survival, metastatic castration-resistant prostate cancer (mCRPC) remains an incurable disease. Herein we report the synergistic antitumor interaction between two well-known drugs used for years in clinical practice, the antiepileptic agent with histone deacetylase inhibitory activity valproic acid and the cholesterol lowering agent simvastatin, in mCRPC models. METHODS: Synergistic anti-tumor effect was assessed on PC3, 22Rv1, DU145, DU145R80, LNCaP prostate cancer cell lines and EPN normal prostate epithelial cells, by calculating combination index (CI), caspase 3/7 activation and colony formation assays as well as on tumor spheroids and microtissues scored with luminescence 3D-cell viability assay. Cancer stem cells (CSC) compartment was studied evaluating specific markers by RT-PCR, western blotting and flow cytometry as well as by limiting dilution assay. Cholesterol content was evaluated by 1H-NMR. Overexpression of wild-type YAP and constitutively active YAP5SA were obtained by lipofectamine-based transfection and evaluated by immunofluorescence, western blotting and RT-PCR. 22Rv1 R_39 docetaxel resistant cells were selected by stepwise exposure to increasing drug concentrations. In vivo experiments were performed on xenograft models of DU145R80, 22Rv1 parental and docetaxel resistant cells, in athymic mice. RESULTS: We demonstrated the capacity of the combined approach to target CSC compartment by a novel molecular mechanism based on the inhibition of YAP oncogene via concurrent modulation of mevalonate pathway and AMPK. Because both CSCs and YAP activation have been associated with chemo-resistance, we tested if the combined approach can potentiate docetaxel, a standard of care in mCRCP treatment. Indeed, we demonstrated, both in vitro and in vivo models, the ability of valproic acid/simvastatin combination to sensitize mCRPC cells to docetaxel and to revert docetaxel-resistance, by mevalonate pathway/YAP axis modulation. CONCLUSION: Overall, mCRPC progression and therapeutic resistance driven by CSCs via YAP, can be tackled by the combined repurposing of two generic and safe drugs, an approach that warrants further clinical development in this disease.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Biomarkers, Tumor/metabolism , Cell Cycle Proteins/antagonists & inhibitors , Drug Synergism , Gene Expression Regulation, Neoplastic/drug effects , Neoplastic Stem Cells/drug effects , Prostatic Neoplasms/drug therapy , Transcription Factors/antagonists & inhibitors , Animals , Apoptosis , Biomarkers, Tumor/genetics , Cell Movement , Cell Proliferation , Docetaxel/administration & dosage , Drug Resistance, Neoplasm , Humans , Male , Mice , Mice, Inbred NOD , Mice, SCID , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Simvastatin/administration & dosage , Tumor Cells, Cultured , Valproic Acid/administration & dosage , Xenograft Model Antitumor Assays
7.
J Exp Clin Cancer Res ; 38(1): 317, 2019 Jul 18.
Article in English | MEDLINE | ID: mdl-31319863

ABSTRACT

BACKGROUND: Molecular markers for prostate cancer (PCa) are required to improve the early definition of patient outcomes. Atypically large extracellular vesicles (EVs), referred as "Large Oncosomes" (LO), have been identified in highly migratory and invasive PCa cells. We recently developed and characterized the DU145R80 subline, selected from parental DU145 cells as resistant to inhibitors of mevalonate pathway. DU145R80 showed different proteomic profile compared to parental DU145 cells, along with altered cytoskeleton dynamics and a more aggressive phenotype. METHODS: Immunofluorescence staining and western blotting were used to identify blebbing and EVs protein cargo. EVs, purified by gradient ultra-centrifugations, were analyzed by tunable resistive pulse sensing and multi-parametric flow cytometry approach coupled with high-resolution imaging technologies. LO functional effects were tested in vitro by adhesion and invasion assays and in vivo xenograft model in nude mice. Xenograft and patient tumor tissues were analyzed by immunohistochemistry. RESULTS: We found spontaneous blebbing and increased shedding of LO from DU145R80 compared to DU145 cells. LO from DU145R80, compared to those from DU145, carried increased amounts of key-molecules involved in PCa progression including integrin alpha V (αV-integrin). By incubating DU145 cells with DU145R80-derived LO we demonstrated that αV-integrin on LO surface was functionally involved in the increased adhesion and invasion of recipient cells, via AKT. Indeed either the pre-incubation of LO with an αV-integrin blocking antibody, or a specific AKT inhibition in recipient cells are able to revert the LO-induced functional effects. Moreover, DU145R80-derived LO also increased DU145 tumor engraftment in a mice model. Finally, we identified αV-integrin positive LO-like structures in tumor xenografts as well as in PCa patient tissues. Increased αV-integrin tumor expression correlated with high Gleason score and lymph node status. CONCLUSIONS: Overall, this study is the first to demonstrate the critical role of αV-integrin positive LO in PCa aggressive features, adding new insights in biological function of these large EVs and suggesting their potential use as PCa prognostic markers.


Subject(s)
Extracellular Vesicles/pathology , Integrin alphaV/metabolism , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins c-akt/metabolism , Animals , Cell Adhesion , Cell Line, Tumor , Epithelial-Mesenchymal Transition , Extracellular Vesicles/metabolism , Gene Expression Regulation, Neoplastic , Humans , Male , Mice , Mice, Nude , Neoplasm Grading , Neoplasm Invasiveness , Neoplasm Transplantation , Prostatic Neoplasms/metabolism , Proteomics/methods , Up-Regulation
8.
J Cell Physiol ; 234(6): 9077-9092, 2019 06.
Article in English | MEDLINE | ID: mdl-30362533

ABSTRACT

Although platinum-based chemotherapy remains the standard-of-care for most patients with advanced non-small-cell lung cancer (NSCLC), acquired resistance occurs frequently predicting poor prognosis. To examine the mechanisms underlying platinum resistance, we have generated and characterized by proteomic approach the resistant A549 CDDP-resistant (CPr-A549) and their parental A549 cells, identifying 15 proteins differentially expressed (13 upregulated and 2 downregulated in CPr-A549). In details, we highlighted a coherent network of proteins clustering together and involved in altered protein folding and endoplasmic reticulum stress, correlated with epithelial to mesenchymal transition process and cancer stem cell markers, where vimentin played a hierarchical role, ultimately resulting in increased aggressive features. By using publicly available databases we showed that the modulated proteins could contribute to NSCLC carcinogenesis and correlate with NSCLC patients prognosis and survival probability, suggesting that they can be used as novel potential prognostic/predictive biomarkers or therapeutic targets to overcome platinum-resistance.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Cisplatin/therapeutic use , Drug Resistance, Neoplasm , Lung Neoplasms/drug therapy , Proteomics , Vimentin/metabolism , A549 Cells , Animals , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Databases, Protein , Endoplasmic Reticulum Stress , Epithelial-Mesenchymal Transition , Female , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice, Nude , Neoplastic Stem Cells/metabolism , Protein Folding , Protein Interaction Maps , Signal Transduction , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
9.
Recent Pat Anticancer Drug Discov ; 13(2): 184-200, 2018.
Article in English | MEDLINE | ID: mdl-29189178

ABSTRACT

BACKGROUND: Modifications of lipid metabolism have been progressively accepted as a hallmark of tumor cells and in particular, an elevated lipogenesis has been described in various types of cancers. OBJECTIVE: Important or deregulated activity of the mevalonate pathway has been demonstrated in different tumors and a wide range of studies have suggested that tumor cells are more dependent on the unceasing availability of mevalonate pathway metabolites than their non-malignant complements. METHODS: This study provides an overview of the state of the art of statins treatment on human cancer. RESULTS: In recent times, various actions have been proposed for statins in different physiological and pathological conditions beyond anti-inflammation and neuroprotection activity. Statins have been shown to act through mevalonate-dependent and -independent mechanisms able to affect several tissue functions and modulating specific signal transduction pathways that could account for statin pleiotropic effect. Based on their characteristics, statins represent ideal candidates for repositioning in cancer therapy. CONCLUSION: In this review article, we provide an overview of the current preclinical and clinical status of statins as antitumor agents. In addition, we evaluated various patents that describe the role of mevalonate pathway inhibitors and methods to determine if cancer cells are sensitive to statins treatment.


Subject(s)
Antineoplastic Agents/administration & dosage , Drug Delivery Systems/methods , Drug Repositioning/methods , Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage , Mevalonic Acid/antagonists & inhibitors , Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Drug Delivery Systems/trends , Drug Repositioning/trends , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/chemistry , Hydroxymethylglutaryl-CoA Reductase Inhibitors/metabolism , Mevalonic Acid/metabolism , Neoplasms/metabolism , Signal Transduction/drug effects , Signal Transduction/physiology
10.
Mol Oncol ; 10(8): 1344-62, 2016 10.
Article in English | MEDLINE | ID: mdl-27499265

ABSTRACT

Peroxisome proliferator-activated receptor-γ (PPARγ) is a transcription factor of the nuclear hormone receptor superfamily implicated in a wide range of processes, including tumorigenesis. Its role in colorectal cancer (CRC) is still debated; most reports support that PPARγ reduced expression is associated with poor prognosis. We employed 2-Dimensional Differential InGel Electrophoresis (2-D DIGE) followed by Liquid Chromatography (LC)-tandem Mass Spectrometry (MS/MS) to identify differentially expressed proteins and the molecular pathways underlying PPARγ expression in CRC progression. We identified several differentially expressed proteins in HT29 and HCT116 CRC cells and derived clones either silenced or overexpressing PPARγ, respectively. In Ingenuity Pathway Analysis (IPA) they showed reciprocal relation with PPARγ and a strong relationship with networks linked to cell death, growth and survival. Interestingly, five of the identified proteins, ezrin (EZR), isoform C of prelamin-A/C (LMNA), alpha-enolase (ENOA), prohibitin (PHB) and RuvB-like 2 (RUVBL2) were shared by the two cell models with opposite expression levels, suggesting a possible regulation by PPARγ. mRNA and western blot analysis were undertaken to obtain a technical validation and confirm the expression trend observed by 2-D DIGE data. We associated EZR upregulation with increased cell surface localization in PPARγ-overexpressing cells by flow cytometry and immunofluorescence staining. We also correlated EZR and PPARγ expression in our series of CRC specimens and the expression profiling of all five proteins levels in the publicly available colon cancer genomic data from Oncomine and Cancer Genome Atlas (TCGA) colon adenocarcinoma (COAD) datasets. In summary, we identified a panel of proteins correlated with PPARγ expression that could be associated with CRC unveiling new pathways to be investigated for the selection of novel potential prognostic/predictive biomarkers and/or therapeutic targets.


Subject(s)
Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Gene Silencing , PPAR gamma/metabolism , Protein Interaction Maps , Proteomics/methods , Blotting, Western , Computational Biology , Cytoskeletal Proteins/metabolism , Databases as Topic , Electrophoresis, Gel, Two-Dimensional , HCT116 Cells , HT29 Cells , Humans , Immunoblotting , Mass Spectrometry , Phenotype , Prohibitins , RNA, Messenger/genetics , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Reproducibility of Results , Subcellular Fractions/metabolism
11.
Oncotarget ; 6(28): 25076-92, 2015 Sep 22.
Article in English | MEDLINE | ID: mdl-26312765

ABSTRACT

In this study, we have characterized the role of annexin A1 (ANXA1) in the acquisition and maintenance of stem-like/aggressive features in prostate cancer (PCa) cells comparing zoledronic acid (ZA)-resistant DU145R80 with their parental DU145 cells. ANXA1 is over-expressed in DU145R80 cells and its down-regulation abolishes their resistance to ZA. Moreover, ANXA1 induces DU145 and DU145R80 invasiveness acting through formyl peptide receptors (FPRs). Also, ANXA1 knockdown is able to inhibit epithelial to mesenchymal transition (EMT) and to reduce focal adhesion kinase (FAK) and metalloproteases (MMP)-2/9 expression in PCa cells. DU145R80 show a cancer stem cell (CSC)-like signature with a high expression of CSC markers including CD44, CD133, NANOG, Snail, Oct4 and ALDH7A1 and CSC-related genes as STAT3. Interestingly, ANXA1 knockdown induces these cells to revert from a putative prostate CSC to a more differentiated phenotype resembling DU145 PCa cell signature. Similar results are obtained concerning some drug resistance-related genes such as ATP Binding Cassette G2 (ABCG2) and Lung Resistant Protein (LRP). Our study provides new insights on the role of ANXA1 protein in PCa onset and progression.


Subject(s)
Annexin A1/metabolism , Antineoplastic Agents/pharmacology , Biomarkers, Tumor/metabolism , Diphosphonates/pharmacology , Drug Resistance, Neoplasm , Imidazoles/pharmacology , Neoplastic Stem Cells/drug effects , Prostatic Neoplasms/drug therapy , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Annexin A1/genetics , Biomarkers, Tumor/genetics , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Shape/drug effects , Dose-Response Relationship, Drug , Drug Resistance, Neoplasm/genetics , Epithelial-Mesenchymal Transition/drug effects , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Male , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Phenotype , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , RNA Interference , Signal Transduction/drug effects , Transfection , Zoledronic Acid
12.
Oncotarget ; 6(7): 5324-41, 2015 Mar 10.
Article in English | MEDLINE | ID: mdl-25481874

ABSTRACT

Proteomic analysis identified differentially expressed proteins between zoledronic acid-resistant and aggressive DU145R80 prostate cancer (PCa) cells and their parental DU145 cells. Ingenuity Pathway Analysis (IPA) showed a strong relationship between the identified proteins within a network associated with cancer and with homogeneous cellular functions prevalently related with regulation of cell organization, movement and consistent with the smaller and reduced cell-cell contact morphology of DU145R80 cells. The identified proteins correlated in publically available human PCa genomic data with increased tumor expression and aggressiveness. DU145R80 exhibit also a clear increase of alpha-v-(αv) integrin, and of urokinase receptor (uPAR), both included within the same network of the identified proteins. Interestingly, the actin-rich structures localized at the cell periphery of DU145R80 cells are rich of Filamin A, one of the identified proteins and uPAR which, in turn, co-localizes with αv-integrin, in podosomes and/or invadopodia. Notably, the invasive feature of DU145R80 may be prevented by blocking anti-αv antibody. Overall, we unveil a signaling network that physically links the interior of the nucleus via the cytoskeleton to the extracellular matrix and that could dictate PCa aggressiveness suggesting novel potential prognostic markers and therapeutic targets for PCa patients.


Subject(s)
Bone Density Conservation Agents/pharmacology , Diphosphonates/pharmacology , Drug Resistance, Neoplasm , Imidazoles/pharmacology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Proteomics/methods , Signal Transduction/drug effects , Blotting, Western , Cell Movement , Cell Proliferation , Electrophoresis, Gel, Two-Dimensional , Gene Ontology , Gene Regulatory Networks , Humans , Male , Neoplasm Invasiveness , Prostatic Neoplasms/drug therapy , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tumor Cells, Cultured , Zoledronic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...