Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Adv Physiol Educ ; 38(1): 80-6, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24585474

ABSTRACT

This study investigated the impact of three commonly used cardiovascular model-assisted activities on student learning and student attitudes and perspectives about science. College students enrolled in a Human Anatomy and Physiology course were randomly assigned to one of three experimental groups (organ dissections, virtual dissections, or plastic models). Each group received a 15-min lecture followed by a 45-min activity with one of the treatments. Immediately after the lesson and then 2 mo later, students were tested on anatomy and physiology knowledge and completed an attitude survey. Students who used plastic models achieved significantly higher overall scores on both the initial and followup exams than students who performed organ or virtual dissections. On the initial exam, students in the plastic model and organ dissection treatments scored higher on anatomy questions than students who performed virtual dissections. Students in the plastic model group scored higher than students who performed organ dissections on physiology questions. On the followup exam, when asked anatomy questions, students in the plastic model group scored higher than dissection students and virtual dissection students. On attitude surveys, organ dissections had higher perceived value and were requested for inclusion in curricula twice as often as any other activity. Students who performed organ dissections were more likely than the other treatment groups to agree with the statement that "science is fun," suggesting that organ dissections may promote positive attitudes toward science. The findings of this study provide evidence for the importance of multiple types of hands-on activities in anatomy laboratory courses.


Subject(s)
Anatomy/education , Cardiovascular Physiological Phenomena , Cardiovascular System/anatomy & histology , Computer Simulation , Computer-Assisted Instruction , Dissection/education , Learning , Models, Anatomic , Models, Cardiovascular , Physiology/education , Students/psychology , Teaching/methods , Attitude , Comprehension , Curriculum , Educational Measurement , Educational Status , Humans , Perception , Surveys and Questionnaires
3.
Biol Bull ; 225(3): 175-83, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24445443

ABSTRACT

The valves of oysters act as a physical barrier between tissues and the external environment, thereby protecting the oyster from environmental stress and predation. To better understand differences in shell properties and predation susceptibilities of two physiologically and morphologically similar oysters, Crassostrea virginica and Crassostrea ariakensis, we quantified and compared two mechanical properties of shells: hardness (resistance to irreversible deformation; GPa) and compressive strength (force necessary to produce a crack; N). We found no differences in the hardness values between foliated layers (innermost and outermost foliated layers), age class (C. virginica: 1, 4, 6, 9 years; C. ariakensis: 4, 6 years), or species. This suggests that the foliated layers have similar properties and are likely composed of the same material. The compressive force required to break wet and dry shells was also not different. However, the shells of both six- and nine-year-old C. virginica withstood higher compressive force than C. virginica shells aged either one or four, and the shells of C. ariakensis at both ages studied (4- and 6-years-old). Differences in ability to withstand compressive force are likely explained by differences in thickness and density between age classes and species. Further, we compared the compressive strength of differing ages of these two species to the crushing force of common oyster predators in the Chesapeake Bay. By studying the physical properties of shells, this work may contribute to a better understanding of the mechanical defenses of oysters as well as of their predation vulnerabilities.


Subject(s)
Animal Shells/chemistry , Compressive Strength , Crassostrea/physiology , Animal Shells/anatomy & histology , Animal Shells/physiology , Animals , Crassostrea/chemistry , Hardness
SELECTION OF CITATIONS
SEARCH DETAIL
...