Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Dis ; 13(10): 909, 2022 10 28.
Article in English | MEDLINE | ID: mdl-36307400

ABSTRACT

PARP inhibitors (PARPi) have revolutionized the therapeutic landscape of epithelial ovarian cancer (EOC) treatment with outstanding benefits in regard to progression-free survival, especially in patients either carrying BRCA1/2 mutations or harboring defects in the homologous recombination repair system. Yet, it remains uncertain which PARPi to apply and how to predict responders when platinum sensitivity is unknown. To shed light on the predictive power of genes previously suggested to be associated with PARPi response, we systematically reviewed the literature and identified 79 publications investigating a total of 93 genes. The top candidate genes were further tested using a comprehensive CRISPR-Cas9 mutagenesis screening in combination with olaparib treatment. Therefore, we generated six constitutive Cas9+ EOC cell lines and profiled 33 genes in a CRISPR-Cas9 cell competition assay using non-essential (AAVS1) and essential (RPA3 and PCNA) genes for cell fitness as negative and positive controls, respectively. We identified only ATM, MUS81, NBN, BRCA2, and RAD51B as predictive markers for olaparib response. As the major survival benefit of PARPi treatment was reported in platinum-sensitive tumors, we next assessed nine top candidate genes in combination with three PARPi and carboplatin. Interestingly, we observed similar dropout rates in a gene and compound independent manner, supporting the strong correlation of cancer cell response to compounds that rely on DNA repair for their effectiveness. In addition, we report on CDK12 as a common vulnerability for EOC cell survival and proliferation without altering the olaparib response, highlighting its potential as a therapeutic target in EOC.


Subject(s)
Ovarian Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , Humans , Female , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Carcinoma, Ovarian Epithelial/drug therapy , Carcinoma, Ovarian Epithelial/genetics , Carboplatin/pharmacology , Carboplatin/therapeutic use , CRISPR-Cas Systems/genetics , Early Detection of Cancer , Phthalazines/pharmacology , Phthalazines/therapeutic use , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Genes, Overlapping
2.
Cell Rep ; 40(7): 111181, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35977490

ABSTRACT

The molecular repertoire promoting cancer cell plasticity is not fully elucidated. Here, we propose that glycosphingolipids (GSLs), specifically the globo and ganglio series, correlate and promote the transition between epithelial and mesenchymal cells. The epithelial character of ovarian cancer remains stable throughout disease progression, and spatial glycosphingolipidomics reveals elevated globosides in the tumor compartment compared with the ganglioside-rich stroma. CRISPR-Cas9 knockin mediated truncation of endogenous E-cadherin induces epithelial-to-mesenchymal transition (EMT) and decreases globosides. The transcriptomics analysis identifies the ganglioside-synthesizing enzyme ST8SIA1 to be consistently elevated in mesenchymal-like samples, predicting poor outcome. Subsequent deletion of ST8SIA1 induces epithelial cell features through mTORS2448 phosphorylation, whereas loss of globosides in ΔA4GALT cells, resulting in EMT, is accompanied by increased ERKY202/T204 and AKTS124. The GSL composition dynamics corroborate cancer cell plasticity, and further evidence suggests that mesenchymal cells are maintained through ganglioside-dependent, calcium-mediated mechanisms.


Subject(s)
Glycosphingolipids , Ovarian Neoplasms , Carcinoma, Ovarian Epithelial , Cell Line, Tumor , Epithelial-Mesenchymal Transition , Female , Gangliosides/metabolism , Globosides/metabolism , Glycosphingolipids/metabolism , Humans , Signal Transduction
3.
ACS Infect Dis ; 7(7): 1894-1900, 2021 07 09.
Article in English | MEDLINE | ID: mdl-33105989

ABSTRACT

Schistosomiasis is a major neglected tropical disease with more than 200 million infections annually. Despite only one drug, praziquantel, being available, the drug pipeline against schistosomiasis is empty, and drug screening tools have limitations. We evaluated the potential of human liver microtissues (hLiMTs) in antischistosomal drug discovery. Because hLiMTs express all human P450 enzymes, they are an excellent tool to evaluate compounds' bioinactivation, bioactivation, and toxicity. To validate the metabolic conversion capacity of hLiMTs, we first quantified (R)- and (S)-praziquantel and the main metabolite trans-OH-praziquantel following incubation with 0.032-50 µM (0.01-15.62 µg/mL) praziquantel for up to 72 h by a validated LC-MS/MS method. We cocultured hLiMTs with newly transformed schistosomula (NTS) and evaluated the antischistosomal activity and cytotoxicity of three prodrugs terfenadine, tamoxifen citrate, and flutamide. HLiMTs converted 300-350 ng (R)-praziquantel within 24 h into trans-OH-praziquantel. We observed changes in the IC50 values for terfenadine, flutamide, and tamoxifen citrate in comparison to the standard NTS assay in vitro. Cytotoxicity was observed at high concentrations of flutamide and tamoxifen citrate. An in vitro platform containing hLiMTs could serve as an advanced drug screening tool for Schistosoma mansoni, providing information on reduced or increased activity and toxicity.


Subject(s)
Schistosoma mansoni , Schistosomiasis mansoni , Animals , Chromatography, Liquid , Drug Evaluation, Preclinical , Humans , Liver , Schistosomiasis mansoni/drug therapy , Tandem Mass Spectrometry
4.
Adv Biosyst ; 4(7): e1900304, 2020 07.
Article in English | MEDLINE | ID: mdl-32510834

ABSTRACT

Schistosomiasis is an acute and chronic disease caused by tropical parasitic worms of the genus Schistosoma, which parasitizes annually over 200 million people worldwide. Screening of antischistosomal compounds is hampered by the low throughput and potential subjectivity of the visual evaluation of the parasite phenotypes, which affects the current drug assays. Here, an impedance-based platform, capable of assessing the viability of Schistosoma mansoni schistosomula exposed to drugs, is presented. This automated and parallelized platform enables unbiased and continuous measurements of dose-response relationships for more than 48 h. The platform performance is established by exposure of schistosomula to three test compounds, praziquantel, oxethazaine, and mefloquine, which are known to affect the larvae phenotypes. The system is thereafter used to investigate the response of schistosomula to methiothepine, an antipsychotic compound, which causes complex drug-induced effects. Continuous monitoring of the parasites reveals transient behavioral phenotypes and allows for extracting temporal characteristics of dose-response curves, which are essential for selecting drugs that feature high activity and fast kinetics of action. These measurements demonstrate that impedance-based detection provides a wealth of information for the in vitro characterization of candidate antischistosomals and, represents a promising tool for the identification of new lead compounds.


Subject(s)
Electric Impedance , Lab-On-A-Chip Devices , Schistosoma mansoni/growth & development , Schistosomicides/pharmacology , Animals , Dose-Response Relationship, Drug
5.
Eur J Pharm Biopharm ; 142: 240-246, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31265895

ABSTRACT

Schistosomiasis is a global disease of significant public health relevance. Only one racemic drug, praziquantel, characterized by low bioavailability, low water solubility and extensive first pass metabolism, is currently available. We studied a new praziquantel formulation (polymorph B), which is based on a racemic praziquantel crystalline polymorph (TELCEU01). Its in vitro activity was tested on newly transformed schistosomula (NTS) and adult Schistosoma mansoni. In vivo studies were conducted in mice harboring chronic S. mansoni infections. Pharmacokinetic (PK) profiles of R- and S-praziquantel and R- and S- polymorph B following oral administration with both formulations were generated by sampling mice at 30, 60, 240 min and 24 h post-treatment, followed by LC-MS/MS analysis. PK parameters were calculated using a non-compartmental analysis with a linear trapezoidal model. In vitro, commercial praziquantel and the polymorph B performed similarly on both NTS (IC50 = 2.58 and 2.40 µg/mL at 72 h) and adults (IC50 = 0.05 and 0.07 µg/mL at 72 h). Praziquantel showed higher in vivo efficacy with an ED50 of 58.75 mg/kg compared to an ED50 of 122.61 mg/kg for the polymorph B. The PK profiles of the two drugs exhibited differences: R-praziquantel showed an overall 40% higher area under the plasma drug concentration-time curve (AUC0→24) (R-praziquantel = 3.42; R-polymorph B = 2.05 h*µg/mL) and an overall 30% lower apparent clearance (Cl/F) (R-praziquantel = 70.68 and R-polymorph B = 97.63 (mg)/(µg/mL)/h). Despite the lack of improved activity and PK properties of polymorph B against S. mansoni, here presented; research on pharmaceutical polymorphism remains a valid and cost-effective option for the development of new praziquantel formulations with enhanced properties such as increased solubility and/or dissolution.


Subject(s)
Anthelmintics/pharmacology , Anthelmintics/pharmacokinetics , Praziquantel/pharmacology , Praziquantel/pharmacokinetics , Schistosoma mansoni/drug effects , Schistosomiasis mansoni/drug therapy , Animals , Biological Availability , Crystallization/methods , Disease Models, Animal , Female , Mice , Schistosomiasis mansoni/parasitology , Solubility/drug effects
6.
Int J Mol Sci ; 20(5)2019 Mar 12.
Article in English | MEDLINE | ID: mdl-30870971

ABSTRACT

Praziquantel (PZQ) is the first line drug for the treatment of schistosome infections and is included in the WHO Model List of Essential Medicines for Children. In this study, the association of mechanochemical activation (MA) and the spray congealing (SC) technology was evaluated for developing a child-friendly PZQ dosage form, with better product handling and biopharmaceutical properties, compared to MA materials. A 1:1 by wt PZQ-Povidone coground-was prepared in a vibrational mill under cryogenic conditions, for favoring amorphization. PZQ was neat ground to obtain its polymorphic form (Form B), which has an improved solubility and bioactivity. Then, activated PZQ powders were loaded into microparticles (MPs) by the SC technology, using the self-emulsifying agent Gelucire® 50/13 as a carrier. Both, the activated powders and the corresponding loaded MPs were characterized for morphology, wettability, solubility, dissolution behavior, drug content, and drug solid state (Hot Stage Microscopy (HSM), Differential Scanning Calorimetry (DSC), X-Ray Powder Diffraction Studies (PXRD), and FT-IR). Samples were also in vitro tested for a comparison with PZQ against Schistosoma mansoni newly transformed schistosomula (NTS) and adults. MPs containing both MA systems showed a further increase of biopharmaceutical properties, compared to the milled powders, while maintaining PZQ bioactivity. MPs containing PZQ Form B represented the most promising product for designing a new PZQ formulation.


Subject(s)
Praziquantel/chemistry , Praziquantel/therapeutic use , Schistosomiasis/drug therapy , Animals , Anthelmintics/chemistry , Anthelmintics/therapeutic use , Calorimetry, Differential Scanning/methods , Chemistry, Pharmaceutical/methods , Child , Drug Compounding/methods , Humans , Povidone/chemistry , Povidone/therapeutic use , Powders/chemistry , Powders/therapeutic use , Schistosoma mansoni/drug effects , Solubility/drug effects , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction/methods
7.
Nat Protoc ; 14(2): 461-481, 2019 02.
Article in English | MEDLINE | ID: mdl-30610241

ABSTRACT

Drug discovery for schistosomiasis is still limited to a handful of academic laboratories worldwide, with only a few novel antischistosomal lead compounds being actively researched. Despite recent international mobilization against the disease to stimulate and promote antischistosomal drug discovery, setting up a drug-screening flow with schistosome parasites remains challenging. Whereas numerous different protocols to obtain and cultivate schistosomes have been published, those describing the drug-screening process are scarce, and none gather together parasite cultivation and early drug discovery procedures. To help overcome this hurdle, we provide here a set of integrated methods either adapted from already-published protocols or based on our long-term experience in schistosomiasis research. Specifically, we detail the establishment and maintenance of the complex and several-week-long Schistosoma mansoni life cycle in a laboratory setting, as well as the means of retrieving and culturing the parasites at their relevant life stages. The in vitro and in vivo assays that are performed along the drug-screening cascade are also described. In these assays, which can be performed within 5 d, the effect of a drug is determined by phenotypic assessment of the parasites' viability and morphology, for which stage-specific scoring scales are proposed. Finally, the modalities for testing and evaluating a compound in vivo, constituting a procedure lasting up to 10 weeks, are presented in order to go from in vitro hit identification to the selection of early lead candidates.


Subject(s)
Drug Discovery/methods , High-Throughput Screening Assays , Life Cycle Stages/drug effects , Schistosoma mansoni/drug effects , Schistosomiasis mansoni/drug therapy , Schistosomicides/pharmacology , Animals , Biomphalaria/parasitology , Cricetinae , Female , Life Cycle Stages/physiology , Mice , Parasitic Sensitivity Tests , Schistosoma mansoni/growth & development , Schistosoma mansoni/pathogenicity , Schistosomiasis mansoni/parasitology , Schistosomicides/chemistry , Time Factors
8.
ACS Sens ; 3(12): 2613-2620, 2018 12 28.
Article in English | MEDLINE | ID: mdl-30426744

ABSTRACT

Schistosomiasis is a neglected tropical disease, caused by parasitic worms, which affects almost 200 million people worldwide. For over 40 years, chemotherapeutic treatment has relied on the administration of praziquantel, an efficacious drug against schistosomiasis. However, concerns about developing drug resistance require the discovery of novel drug compounds. Currently, the drug-screening process is mostly based on the visual evaluation of drug effects on worm larvae in vitro by a trained operator. This manual process is extremely labor-intensive, has limited throughput, and may be affected by subjectivity of the operator evaluation. In this paper, we introduce a microfluidic platform with integrated electrodes for the automated detection of worm larvae viability using an impedance-based approach. The microfluidic analysis unit consists of two sets of electrodes and a channel of variable geometry to enable counting and size detection of single parasite larvae and the collective evaluation of the motility of the larvae as an unbiased estimator for their viability. The current platform also allows for multiplexing of the analysis units resulting in increased throughput. We used our platform to record size and motility variations of Schistosoma mansoni larvae exposed to different concentrations of mefloquine, a drug with established in vitro antischistosomal properties. The developed platform demonstrates the potential of integrated microfluidic platforms for high-throughput antischistosomal drug screening.


Subject(s)
Electric Impedance , Electrochemical Techniques/methods , Mefloquine/pharmacology , Microfluidic Analytical Techniques/methods , Schistosomicides/pharmacology , Animals , Dimethyl Sulfoxide/chemistry , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Electrochemical Techniques/instrumentation , Electrodes , Equipment Design , Microfluidic Analytical Techniques/instrumentation , Parasitic Sensitivity Tests/instrumentation , Parasitic Sensitivity Tests/methods , Schistosoma mansoni/drug effects
9.
Article in English | MEDLINE | ID: mdl-33409508

ABSTRACT

Human schistosomiasis is a neglected tropical disease caused by trematodes, affecting almost 250 million people worldwide. For the past 30 years, treatment has relied on the large-scale administration of praziquantel. However, concerns regarding the appearance of drug-resistance parasites require efforts in identifying novel classes of suitable drugs against schistosomiasis. The current drug screening system is manual, slow and subjective. We present here a microfluidic platform capable of detecting changes in viability of Schistosoma mansoni larvae (Newly Transformed Schistosomula, NTS). This platform could serve as a pre-screening tool for the identification of drug candidates. It is composed of a pair of coplanar electrodes integrated in a microfluidic channel for the detection and quantification of NTS motility. Comparison of viability detection by using our platform with the standard visual evaluation shows that our method is able to reliably detect viable and non-viable NTS at high sensitivity, also in case of low-motility parasites, while enabling a 10 fold decrease in sample consumption.

SELECTION OF CITATIONS
SEARCH DETAIL
...