Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
bioRxiv ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38585897

ABSTRACT

Chromosome 22q11.2 deletion is among the strongest known genetic risk factors for neuropsychiatric disorders, including autism and schizophrenia. Brain imaging studies have reported disrupted large-scale functional connectivity in people with 22q11 deletion syndrome (22q11DS). However, the significance and biological determinants of these functional alterations remain unclear. Here, we use a cross-species design to investigate the developmental trajectory and neural underpinnings of brain dysconnectivity in 22q11DS. We find that LgDel mice, an established mouse model of 22q11DS, exhibit age-specific patterns of functional MRI (fMRI) dysconnectivity, with widespread fMRI hyper-connectivity in juvenile mice reverting to focal hippocampal hypoconnectivity over puberty. These fMRI connectivity alterations are mirrored by co-occurring developmental alterations in dendritic spine density, and are both transiently normalized by developmental GSK3ß inhibition, suggesting a synaptic origin for this phenomenon. Notably, analogous hyper- to hypoconnectivity reconfiguration occurs also in human 22q11DS, where it affects hippocampal and cortical regions spatially enriched for synaptic genes that interact with GSK3ß, and autism-relevant transcripts. Functional dysconnectivity in somatomotor components of this network is predictive of age-dependent social alterations in 22q11.2 deletion carriers. Taken together, these findings suggest that synaptic-related mechanisms underlie developmentally mediated functional dysconnectivity in 22q11DS.

2.
Mol Psychiatry ; 23(4): 1001-1013, 2018 04.
Article in English | MEDLINE | ID: mdl-28322282

ABSTRACT

Maternal immune activation (MIA) via infection during pregnancy is known to increase risk for autism spectrum disorder (ASD). However, it is unclear how MIA disrupts fetal brain gene expression in ways that may explain this increased risk. Here we examine how MIA dysregulates rat fetal brain gene expression (at a time point analogous to the end of the first trimester of human gestation) in ways relevant to ASD-associated pathophysiology. MIA downregulates expression of ASD-associated genes, with the largest enrichments in genes known to harbor rare highly penetrant mutations. MIA also downregulates expression of many genes also known to be persistently downregulated in the ASD cortex later in life and which are canonically known for roles in affecting prenatally late developmental processes at the synapse. Transcriptional and translational programs that are downstream targets of highly ASD-penetrant FMR1 and CHD8 genes are also heavily affected by MIA. MIA strongly upregulates expression of a large number of genes involved in translation initiation, cell cycle, DNA damage and proteolysis processes that affect multiple key neural developmental functions. Upregulation of translation initiation is common to and preserved in gene network structure with the ASD cortical transcriptome throughout life and has downstream impact on cell cycle processes. The cap-dependent translation initiation gene, EIF4E, is one of the most MIA-dysregulated of all ASD-associated genes and targeted network analyses demonstrate prominent MIA-induced transcriptional dysregulation of mTOR and EIF4E-dependent signaling. This dysregulation of translation initiation via alteration of the Tsc2-mTor-Eif4e axis was further validated across MIA rodent models. MIA may confer increased risk for ASD by dysregulating key aspects of fetal brain gene expression that are highly relevant to pathophysiology affecting ASD.


Subject(s)
Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/immunology , Brain/embryology , Maternal-Fetal Exchange/immunology , Prenatal Exposure Delayed Effects/immunology , Animals , Disease Models, Animal , Eukaryotic Initiation Factor-4E/genetics , Eukaryotic Initiation Factor-4E/metabolism , Female , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Gene Regulatory Networks , Humans , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Pregnancy , Proteomics , Rats , Risk Factors , Transcriptome
3.
Transl Psychiatry ; 7(4): e1090, 2017 04 11.
Article in English | MEDLINE | ID: mdl-28398337

ABSTRACT

Autism spectrum conditions (ASC) are more prevalent in males than females. The biological basis of this difference remains unclear. It has been postulated that one of the primary causes of ASC is a partial disconnection of the frontal lobe from higher-order association areas during development (that is, a frontal 'disconnection syndrome'). Therefore, in the current study we investigated whether frontal connectivity differs between males and females with ASC. We recruited 98 adults with a confirmed high-functioning ASC diagnosis (61 males: aged 18-41 years; 37 females: aged 18-37 years) and 115 neurotypical controls (61 males: aged 18-45 years; 54 females: aged 18-52 years). Current ASC symptoms were evaluated using the Autism Diagnostic Observation Schedule (ADOS). Diffusion tensor imaging was performed and fractional anisotropy (FA) maps were created. Mean FA values were determined for five frontal fiber bundles and two non-frontal fiber tracts. Between-group differences in mean tract FA, as well as sex-by-diagnosis interactions were assessed. Additional analyses including ADOS scores informed us on the influence of current ASC symptom severity on frontal connectivity. We found that males with ASC had higher scores of current symptom severity than females, and had significantly lower mean FA values for all but one tract compared to controls. No differences were found between females with or without ASC. Significant sex-by-diagnosis effects were limited to the frontal tracts. Taking current ASC symptom severity scores into account did not alter the findings, although the observed power for these analyses varied. We suggest these findings of frontal connectivity abnormalities in males with ASC, but not in females with ASC, have the potential to inform us on some of the sex differences reported in the behavioral phenotype of ASC.


Subject(s)
Autism Spectrum Disorder/diagnostic imaging , Autism Spectrum Disorder/pathology , Diffusion Tensor Imaging , Frontal Lobe/diagnostic imaging , Frontal Lobe/pathology , Neural Pathways/diagnostic imaging , Neural Pathways/pathology , Adolescent , Adult , Case-Control Studies , Female , Humans , Male , Middle Aged , Sex Factors , Young Adult
4.
Transl Psychiatry ; 7(4): e1099, 2017 04 18.
Article in English | MEDLINE | ID: mdl-28418398

ABSTRACT

Oxytocin may influence various human behaviors and the connectivity across subcortical and cortical networks. Previous oxytocin studies are male biased and often constrained by task-based inferences. Here, we investigate the impact of oxytocin on resting-state connectivity between subcortical and cortical networks in women. We collected resting-state functional magnetic resonance imaging (fMRI) data on 26 typically developing women 40 min following intranasal oxytocin administration using a double-blind placebo-controlled crossover design. Independent components analysis (ICA) was applied to examine connectivity between networks. An independent analysis of oxytocin receptor (OXTR) gene expression in human subcortical and cortical areas was carried out to determine plausibility of direct oxytocin effects on OXTR. In women, OXTR was highly expressed in striatal and other subcortical regions, but showed modest expression in cortical areas. Oxytocin increased connectivity between corticostriatal circuitry typically involved in reward, emotion, social communication, language and pain processing. This effect was 1.39 standard deviations above the null effect of no difference between oxytocin and placebo. This oxytocin-related effect on corticostriatal connectivity covaried with autistic traits, such that oxytocin-related increase in connectivity was stronger in individuals with higher autistic traits. In sum, oxytocin strengthened corticostriatal connectivity in women, particularly with cortical networks that are involved in social-communicative, motivational and affective processes. This effect may be important for future work on neurological and psychiatric conditions (for example, autism), particularly through highlighting how oxytocin may operate differently for subsets of individuals.


Subject(s)
Cerebral Cortex/drug effects , Connectome , Corpus Striatum/drug effects , Nerve Net/drug effects , Administration, Intranasal , Adult , Affect/drug effects , Cerebral Cortex/diagnostic imaging , Communication , Corpus Striatum/diagnostic imaging , Double-Blind Method , Female , Gene Expression/drug effects , Humans , Magnetic Resonance Imaging , Middle Aged , Motivation/drug effects , Nerve Net/diagnostic imaging , Receptors, Oxytocin/genetics , Social Behavior , Young Adult
5.
Cereb Cortex ; 26(7): 3297-309, 2016 07.
Article in English | MEDLINE | ID: mdl-27130663

ABSTRACT

Autism spectrum disorder (ASD) is a complex neurodevelopmental condition, which is accompanied by differences in gray matter neuroanatomy and white matter connectivity. However, it is unknown whether these differences are linked or reflect independent aetiologies. Using a multimodal neuroimaging approach, we therefore examined 51 male adults with ASD and 48 neurotypical controls to investigate the relationship between gray matter local gyrification (lGI) and white matter diffusivity in associated fiber tracts. First, ASD individuals had a significant increase in gyrification around the left pre- and post-central gyrus. Second, white matter fiber tracts originating and/or terminating in the cluster of increased lGI had a significant increase in axial diffusivity. This increase in diffusivity was predominantly observed in tracts in close proximity to the cortical sheet. Last, we demonstrate that the increase in lGI was significantly correlated with increased diffusivity of short tracts. This relationship was not significantly modulated by a main effect of group (i.e., ASD), which was more closely associated with gray matter gyrification than white matter diffusivity. Our findings suggest that differences in gray matter neuroanatomy and white matter connectivity are closely linked, and may reflect common rather than distinct aetiological pathways.


Subject(s)
Autism Spectrum Disorder/diagnostic imaging , Cerebral Cortex/diagnostic imaging , Gray Matter/diagnostic imaging , White Matter/diagnostic imaging , Adolescent , Adult , Diffusion Tensor Imaging , Humans , Imaging, Three-Dimensional , Intelligence , Magnetic Resonance Imaging , Male , Neural Pathways/diagnostic imaging , Organ Size , Pattern Recognition, Automated , Young Adult
6.
Transl Psychiatry ; 5: e507, 2015 Feb 10.
Article in English | MEDLINE | ID: mdl-25668435

ABSTRACT

Autism spectrum conditions (autism) affect ~1% of the population and are characterized by deficits in social communication. Oxytocin has been widely reported to affect social-communicative function and its neural underpinnings. Here we report the first evidence that intranasal oxytocin administration improves a core problem that individuals with autism have in using eye contact appropriately in real-world social settings. A randomized double-blind, placebo-controlled, within-subjects design is used to examine how intranasal administration of 24 IU of oxytocin affects gaze behavior for 32 adult males with autism and 34 controls in a real-time interaction with a researcher. This interactive paradigm bypasses many of the limitations encountered with conventional static or computer-based stimuli. Eye movements are recorded using eye tracking, providing an objective measurement of looking patterns. The measure is shown to be sensitive to the reduced eye contact commonly reported in autism, with the autism group spending less time looking to the eye region of the face than controls. Oxytocin administration selectively enhanced gaze to the eyes in both the autism and control groups (transformed mean eye-fixation difference per second=0.082; 95% CI:0.025-0.14, P=0.006). Within the autism group, oxytocin has the most effect on fixation duration in individuals with impaired levels of eye contact at baseline (Cohen's d=0.86). These findings demonstrate that the potential benefits of oxytocin in autism extend to a real-time interaction, providing evidence of a therapeutic effect in a key aspect of social communication.


Subject(s)
Asperger Syndrome/drug therapy , Autistic Disorder/drug therapy , Fixation, Ocular , Interpersonal Relations , Oxytocics/therapeutic use , Oxytocin/therapeutic use , Social Behavior , Administration, Intranasal , Adolescent , Adult , Case-Control Studies , Double-Blind Method , Eye Movement Measurements , Humans , Male , Middle Aged , Social Skills , Young Adult
7.
Mol Psychiatry ; 20(3): 369-76, 2015 Mar.
Article in English | MEDLINE | ID: mdl-24888361

ABSTRACT

Autism affects males more than females, giving rise to the idea that the influence of steroid hormones on early fetal brain development may be one important early biological risk factor. Utilizing the Danish Historic Birth Cohort and Danish Psychiatric Central Register, we identified all amniotic fluid samples of males born between 1993 and 1999 who later received ICD-10 (International Classification of Diseases, 10th Revision) diagnoses of autism, Asperger syndrome or PDD-NOS (pervasive developmental disorder not otherwise specified) (n=128) compared with matched typically developing controls. Concentration levels of Δ4 sex steroids (progesterone, 17α-hydroxy-progesterone, androstenedione and testosterone) and cortisol were measured with liquid chromatography tandem mass spectrometry. All hormones were positively associated with each other and principal component analysis confirmed that one generalized latent steroidogenic factor was driving much of the variation in the data. The autism group showed elevations across all hormones on this latent generalized steroidogenic factor (Cohen's d=0.37, P=0.0009) and this elevation was uniform across ICD-10 diagnostic label. These results provide the first direct evidence of elevated fetal steroidogenic activity in autism. Such elevations may be important as epigenetic fetal programming mechanisms and may interact with other important pathophysiological factors in autism.


Subject(s)
Asperger Syndrome/blood , Autistic Disorder/blood , Fetus/metabolism , Steroids/metabolism , Analysis of Variance , Case-Control Studies , Chromatography, Liquid , Cohort Studies , Denmark , Female , Gestational Age , Humans , Hydrocortisone/metabolism , Male , Principal Component Analysis , Tandem Mass Spectrometry
8.
J Hazard Mater ; 223-224: 53-62, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-22595542

ABSTRACT

Hybrid mesoporous materials are potentially useful for metal ion scavenging and retrieval because of their high surface areas, controlled accessibility and tailored functionalization. Some aspects that are linked to the performance of HMM include pore accessibility, stability of the organic functions and reusability. Knowledge of these aspects is critical in the design of adsorption-desorption protocols. In this work we produce and characterize propylamino-substituted large pore silica (SBA-15-N), which is submitted to Cu(II) adsorption from copper sulfate solutions, followed by desorption in acid media and material regeneration. We find that the hybrid material is an efficient adsorbent (1.15-1.75mmol Cu(II)g(-1)), although a fraction of the organic groups is lost during the adsorption process. An X-ray photoelectron spectroscopy (XPS) study demonstrates that the contents of amino groups are higher in the material surface, leading to different behaviors in Cu(II) complexation along the material. These materials can be regenerated by exposure to acidic media. Thermal processing of the hybrid materials leads to better durability in aqueous solutions during reprocessing, due to enhanced polycondensation of the inorganic framework. Thermally treated samples, once regenerated, are efficient adsorbents in a second step of Cu(II) adsorption. We discuss the materials processing factors involved in the improved adsorption of Cu(II), its quantitative release and reusability of the material.


Subject(s)
Copper Sulfate/isolation & purification , Propylamines/chemistry , Recycling , Silicon Dioxide/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Adsorption , Microscopy, Electron, Scanning , Photoelectron Spectroscopy , Porosity , Spectroscopy, Fourier Transform Infrared , Surface Properties
9.
AJNR Am J Neuroradiol ; 33(1): 83-9, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22173769

ABSTRACT

BACKGROUND AND PURPOSE: It has been proposed that autism spectrums condition may represent a form of extreme male brain (EMB), a notion supported by psychometric, behavioral, and endocrine evidence. Yet, limited data are presently available evaluating this hypothesis in terms of neuroanatomy. Here, we investigated sex-related anatomic features in adults with AS, a "pure" form of autism not involving major developmental delay. MATERIALS AND METHODS: Males and females with AS and healthy controls (n = 28 and 30, respectively) were recruited. Structural MR imaging was performed to measure overall gray and white matter volume and to assess regional effects by means of VBM. DTI was used to investigate the integrity of the main white matter tracts. RESULTS: Significant interactions were found between sex and diagnosis in total white matter volume, regional gray matter volume in the right parietal operculum, and fractional anisotropy (FA) in the body of the CC, cingulum, and CR. Post hoc comparisons indicated that the typical sexual dimorphism found in controls, whereby males have larger FA and total white matter volume, was absent or attenuated in participants with AS. CONCLUSIONS: Our results point to a fundamental role of the factors that underlie sex-specific brain differentiation in the etiology of autism.


Subject(s)
Algorithms , Autistic Disorder/pathology , Brain/pathology , Diffusion Magnetic Resonance Imaging/methods , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Adult , Autistic Disorder/classification , Female , Humans , Image Enhancement/methods , Male , Reproducibility of Results , Sensitivity and Specificity , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...