Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(5): e0285390, 2023.
Article in English | MEDLINE | ID: mdl-37141240

ABSTRACT

The Indian River Lagoon is a primary location of field-based "grow-out" for bivalve shellfish aquaculture along Florida's Atlantic coast. Grow-out locations have substantially higher clam densities than surrounding ambient sediment, potentially attracting mollusk predators to the area. Inspired by clammer reports of damaged grow-out gear, we used passive acoustic telemetry to examine the potential interactions between two highly mobile invertivores-whitespotted eagle rays (Aetobatus narinari) and cownose rays (Rhinoptera spp.)-and two clam lease sites in Sebastian, FL and compared these to nearby reference sites (Saint Sebastian River mouth, Sebastian Inlet) from 01 June 2017 to 31 May 2019. Clam lease detections accounted for 11.3% and 5.6% of total detections within the study period, for cownose and whitespotted eagle rays, respectively. Overall, the inlet sites logged the highest proportion of detections for whitespotted eagle rays (85.6%), while cownose rays (11.1%) did not use the inlet region extensively. However, both species had significantly more detections at the inlet receivers during the day, and on the lagoon receivers during the night. Both species exhibited long duration visits (> 17.1 min) to clam lease sites, with the longest visit being 387.5 min. These visit durations did not vary substantially between species, although there was individual variability. Based on generalized additive mixed models, longer visits were observed around 1000 and 1800 h for cownose and whitespotted eagle rays, respectively. Since 84% of all visits were from whitespotted eagle rays and these longer visits were significantly longer at night, this information suggests that observed interactions with the clam leases are potentially underestimated, given most clamming operations occur during daytime (i.e., morning). These results justify the need for continued monitoring of mobile invertivores in the region, including additional experimentation to assess behaviors (e.g., foraging) exhibited at the clam lease sites.


Subject(s)
Bivalvia , Rivers , Animals , Florida , Shellfish , Aquaculture/methods
2.
PLoS One ; 17(10): e0276528, 2022.
Article in English | MEDLINE | ID: mdl-36264943

ABSTRACT

Biophysical models are a powerful tool for assessing population connectivity of marine organisms that broadcast spawn. Albula vulpes is a species of bonefish that is an economically and culturally important sportfish found throughout the Caribbean and that exhibits genetic connectivity among geographically distant populations. We created ontogenetically relevant biophysical models for bonefish larval dispersal based upon multiple observed spawning events in Abaco, The Bahamas in 2013, 2018, and 2019. Biological parameterizations were informed through active acoustic telemetry, CTD casts, captive larval rearing, and field collections of related albulids and anguillids. Ocean conditions were derived from the Regional Navy Coastal Ocean Model American Seas dataset. Each spawning event was simulated 100 times using the program Ichthyop. Ten-thousand particles were released at observed and putative spawning locations and were allowed to disperse for the full 71-day pelagic larval duration for A. vulpes. Settlement densities in defined settlement zones were assessed along with interactions with oceanographic features. The prevailing Northern dispersal paradigm exhibited strong connectivity with Grand Bahama, the Berry Islands, Andros, and self-recruitment to lower and upper Abaco. Ephemeral gyres and flow direction within Northwest and Northeast Providence Channels were shown to have important roles in larval retention to the Bahamian Archipelago. Larval development environments for larvae settling upon different islands showed few differences and dispersal was closely associated with the thermocline. Settlement patterns informed the suggestion for expansion of conservation parks in Grand Bahama, Abaco, and Andros, and the creation of a parks in Eleuthera and the Berry Islands to protect fisheries. Further observation of spawning events and the creation of biophysical models will help to maximize protection for bonefish spawning locations and nursery habitat, and may help to predict year-class strength for bonefish stocks throughout the Greater Caribbean.


Subject(s)
Fisheries , Fishes , Animals , Larva , Bahamas , Population Dynamics , Oceans and Seas
3.
Front Physiol ; 3: 310, 2012.
Article in English | MEDLINE | ID: mdl-22934061

ABSTRACT

Phenotypic flexibility is critical in determining fitness. As conditions change during ontogeny, continued responsiveness is necessary to meet the demands of the environment. Studies have shown that subsequent ontogenetic periods of development can interact with one another and shape developmental outcomes. The role genetic variation within populations plays in shaping these outcomes remains unclear. Four full-sib families of zebrafish Danio rerio were raised under for dietary regimes: high food rations for 60 days (HH), low food rations for 60 days (LL), high food rations for 30 days followed by low food rations for 30 (HL), and low food rations for 30 days followed by high food rations for 30 (LH). While the low ration diet significantly reduced body length at 30 days, diet was no longer a significant factor at day 60. Only family level variation influenced body length. Furthermore, there was significant family level variation in the manner in which swimming performance responded to fluctuating dietary conditions. Some families increased swimming performance in response to dietary change, while others did not. These results suggest that plastic responsiveness to subsequent environmental changes can be trait specific and vary significantly within populations.

SELECTION OF CITATIONS
SEARCH DETAIL
...