Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Genomics ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38975795

ABSTRACT

Gaining insight into the diversity, structure, and metabolic functions of microbial communities is essential for understanding their roles in host health and ecosystem dynamics. However, research on the seahorse-associated microbiome remains limited, despite these threatened fish facing increasing human pressures worldwide. Here, we explored the microbial diversity and metabolic functions of the skin and gut of the tiger tail seahorse (Hippocampus comes) and its surrounding environment using shotgun metagenomics and bioinformatics. Members of the Pseudomonadota phylum were dominant in the skin microbiome, whereas Bacteroidota was dominant in the gut. Bacillota, Actinomycetota, and Planctomycetota were also detected in the seahorse-associated microbiome. Statistical analysis revealed significant differences (p<0.01) in species diversity between skin and gut microbiomes, with members belonging to the Moraxellaceae family being dominant on the skin and the Bacteroidaceae family in the gut. Moreover, the surrounding environment (water or sediment) did not have a direct effect on the seahorse microbiome composition. The skin microbiome exhibited a higher abundance of functional genes related to energy, lipid, amino acid metabolism, as well as terpenoids and polyketides metabolism, xenobiotics biodegradation and metabolism compared to the gut. Despite differences among classes, the total abundance of bacteriocins was similar in both gut and skin microbiomes, which is significant in shaping microbial communities due to their antimicrobial properties. A better knowledge of seahorse microbiomes benefits conservation and sustainable aquaculture efforts, offering insights into habitat protection, disease management, and optimizing aquaculture environments, thereby promoting seahorse health and welfare while minimizing environmental impact and enhancing aquaculture sustainability.

2.
Mar Biotechnol (NY) ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864950

ABSTRACT

This study aimed to investigate the taxonomic and functional patterns of the microbiome associated with Barbour's seahorse (Hippocampus barbouri) using a combination of shotgun metagenomics and bioinformatics. The analyses revealed that Pseudomonadota and Bacillota were the dominant phyla in the seahorse skin microbiome, whereas Pseudomonadota and, to a lesser extent, Bacillota and Bacteroidota were the dominant phyla in the seahorse gut microbiome. Several metabolic pathway categories were found to be enriched in the skin microbiome, including amino acid metabolism, carbohydrate metabolism, cofactor and vitamin metabolism, energy metabolism, nucleotide metabolism, as well as membrane transport, signal transduction, and cellular community-prokaryotes. In contrast, the gut microbiome exhibited enrichment in metabolic pathways associated with the metabolism of terpenoids and polyketides, biosynthesis of other secondary metabolites, xenobiotics biodegradation and metabolism, and quorum sensing. Additionally, although the relative abundance of bacteriocins in the skin and gut was slightly similar, notable differences were observed at the class level. Specifically, class I bacteriocins were found to be more abundant in the skin microbiome, whereas class III bacteriocins were more abundant in the gut microbiome. To the best of our knowledge, this study represents the first comprehensive examination of the taxonomic and functional patterns of the skin and gut microbiome in Barbour's seahorse. These findings can greatly contribute to a deeper understanding of the seahorse-associated microbiome, which can play a pivotal role in predicting and controlling bacterial infections, thereby contributing to the success of aquaculture and health-promoting initiatives.

3.
Microb Biotechnol ; 17(4): e14464, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38635123

ABSTRACT

In this opinion, we discuss the role of tRNAs in phage biology and their importance in DNA replication and phage-host interactions. Phages are a diverse group of obligate bacterial viruses that possess genomes with a wide range of sizes. Among them, we find phages with few genes that depend entirely on their host's translational machinery for replication. However, some phages carry genes for all replication steps and even contain genes for their own translational synthesis. In these cases, the integration of tRNA genes in their genomes is not completely understood, generating different theories about their presence and function during the replication cycle. Although different studies have attempted to elucidate their role, additional studies are needed to clarify the presence and significance of tRNA genes in phages. Moreover, we highlight the importance of tRNA genes in phages from both ecological and therapeutic perspectives.


Subject(s)
Bacteriophages , RNA, Transfer
SELECTION OF CITATIONS
SEARCH DETAIL
...