Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(25): e2322588121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38861598

ABSTRACT

The nematode intestine is the primary site for nutrient uptake and storage as well as the synthesis of biomolecules; lysosome-related organelles known as gut granules are important for many of these functions. Aspects of intestine biology are not well understood, including the export of the nutrients it imports and the molecules it synthesizes, as well as the complete functions and protein content of the gut granules. Here, we report a mass spectrometry (MS)-based proteomic analysis of the intestine of the Caenorhabditis elegans and of its gut granules. Overall, we identified approximately 5,000 proteins each in the intestine and the gonad and showed that most of these proteins can be detected in samples extracted from a single worm, suggesting the feasibility of individual-level genetic analysis using proteomes. Comparing proteomes and published transcriptomes of the intestine and the gonad, we identified proteins that appear to be synthesized in the intestine and then transferred to the gonad. To identify gut granule proteins, we compared the proteome of individual intestines deficient in gut granules to the wild type. The identified gut granule proteome includes proteins known to be exclusively localized to the granules and additional putative gut granule proteins. We selected two of these putative gut granule proteins for validation via immunohistochemistry, and our successful confirmation of both suggests that our strategy was effective in identifying the gut granule proteome. Our results demonstrate the practicability of single-tissue MS-based proteomic analysis in small organisms and in its future utility.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Lysosomes , Proteomics , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Proteomics/methods , Lysosomes/metabolism , Proteome/metabolism , Intestines , Intestinal Mucosa/metabolism , Gonads/metabolism , Mass Spectrometry/methods , Organelles/metabolism
2.
Proc Natl Acad Sci U S A ; 121(18): e2318619121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38657050

ABSTRACT

Nonalcoholic fatty liver disease, recently renamed metabolic dysfunction-associated steatotic liver disease (MASLD), is a progressive metabolic disorder that begins with aberrant triglyceride accumulation in the liver and can lead to cirrhosis and cancer. A common variant in the gene PNPLA3, encoding the protein PNPLA3-I148M, is the strongest known genetic risk factor for MASLD. Despite its discovery 20 y ago, the function of PNPLA3, and now the role of PNPLA3-I148M, remain unclear. In this study, we sought to dissect the biogenesis of PNPLA3 and PNPLA3-I148M and characterize changes induced by endogenous expression of the disease-causing variant. Contrary to bioinformatic predictions and prior studies with overexpressed proteins, we demonstrate here that PNPLA3 and PNPLA3-I148M are not endoplasmic reticulum-resident transmembrane proteins. To identify their intracellular associations, we generated a paired set of isogenic human hepatoma cells expressing PNPLA3 and PNPLA3-I148M at endogenous levels. Both proteins were enriched in lipid droplet, Golgi, and endosomal fractions. Purified PNPLA3 and PNPLA3-I148M proteins associated with phosphoinositides commonly found in these compartments. Despite a similar fractionation pattern as the wild-type variant, PNPLA3-I148M induced morphological changes in the Golgi apparatus, including increased lipid droplet-Golgi contact sites, which were also observed in I148M-expressing primary human patient hepatocytes. In addition to lipid droplet accumulation, PNPLA3-I148M expression caused significant proteomic and transcriptomic changes that resembled all stages of liver disease. Cumulatively, we validate an endogenous human cellular system for investigating PNPLA3-I148M biology and identify the Golgi apparatus as a central hub of PNPLA3-I148M-driven cellular change.


Subject(s)
Acyltransferases , Golgi Apparatus , Lipid Droplets , Phospholipases A2, Calcium-Independent , Humans , Acyltransferases/metabolism , Golgi Apparatus/metabolism , Lipase/metabolism , Lipase/genetics , Lipid Droplets/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Phospholipases A2, Calcium-Independent/metabolism
3.
bioRxiv ; 2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37873239

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD), recently renamed metabolic dysfunction-associated steatotic liver disease (MASLD), is a progressive metabolic disorder that begins with aberrant triglyceride accumulation in the liver and can lead to cirrhosis and cancer. A common variant in the gene PNPLA3, encoding the protein PNPLA3-I148M, is the strongest known genetic risk factor for MASLD to date. Despite its discovery twenty years ago, the function of PNPLA3, and now the role of PNPLA3-I148M, remain unclear. In this study, we sought to dissect the biogenesis of PNPLA3 and PNPLA3-I148M and characterize changes induced by endogenous expression of the disease-causing variant. Contrary to bioinformatic predictions and prior studies with overexpressed proteins, we demonstrate here that PNPLA3 and PNPLA3-I148M are not endoplasmic reticulum-resident transmembrane proteins. To identify their intracellular associations, we generated a paired set of isogenic human hepatoma cells expressing PNPLA3 and PNPLA3-I148M at endogenous levels. Both proteins were enriched in lipid droplet, Golgi, and endosomal fractions. Purified PNPLA3 and PNPLA3-I148M proteins associated with phosphoinositides commonly found in these compartments. Despite a similar fractionation pattern as the wild-type variant, PNPLA3-I148M induced morphological changes in the Golgi apparatus, including increased lipid droplet-Golgi contact sites, which were also observed in I148M-expressing primary human patient hepatocytes. In addition to lipid droplet accumulation, PNPLA3-I148M expression caused significant proteomic and transcriptomic changes that resembled all stages of liver disease. Cumulatively, we validate an endogenous human cellular system for investigating PNPLA3-I148M biology and identify the Golgi apparatus as a central hub of PNPLA3-I148M-driven cellular change.

4.
Sci Adv ; 9(41): eade3816, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37831779

ABSTRACT

Inherent or acquired resistance to sotorasib poses a substantialt challenge for NSCLC treatment. Here, we demonstrate that acquired resistance to sotorasib in isogenic cells correlated with increased expression of integrin ß4 (ITGB4), a component of the focal adhesion complex. Silencing ITGB4 in tolerant cells improved sotorasib sensitivity, while overexpressing ITGB4 enhanced tolerance to sotorasib by supporting AKT-mTOR bypass signaling. Chronic treatment with sotorasib induced WNT expression and activated the WNT/ß-catenin signaling pathway. Thus, silencing both ITGB4 and ß-catenin significantly improved sotorasib sensitivity in tolerant, acquired, and inherently resistant cells. In addition, the proteasome inhibitor carfilzomib (CFZ) exhibited synergism with sotorasib by down-regulating ITGB4 and ß-catenin expression. Furthermore, adagrasib phenocopies the combination effect of sotorasib and CFZ by suppressing KRAS activity and inhibiting cell cycle progression in inherently resistant cells. Overall, our findings unveil previously unrecognized nongenetic mechanisms underlying resistance to sotorasib and propose a promising treatment strategy to overcome resistance.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Drug Resistance, Neoplasm , Lung Neoplasms , Humans , Antiviral Agents , beta Catenin/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Drug Resistance, Neoplasm/genetics
5.
Cell Chem Biol ; 30(10): 1235-1247.e6, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37531956

ABSTRACT

Targeting transcription replication conflicts, a major source of endogenous DNA double-stranded breaks and genomic instability could have important anticancer therapeutic implications. Proliferating cell nuclear antigen (PCNA) is critical to DNA replication and repair processes. Through a rational drug design approach, we identified a small molecule PCNA inhibitor, AOH1996, which selectively kills cancer cells. AOH1996 enhances the interaction between PCNA and the largest subunit of RNA polymerase II, RPB1, and dissociates PCNA from actively transcribed chromatin regions, while inducing DNA double-stranded breaks in a transcription-dependent manner. Attenuation of RPB1 interaction with PCNA, by a point mutation in RPB1's PCNA-binding region, confers resistance to AOH1996. Orally administrable and metabolically stable, AOH1996 suppresses tumor growth as a monotherapy or as a combination treatment but causes no discernable side effects. Inhibitors of transcription replication conflict resolution may provide a new and unique therapeutic avenue for exploiting this cancer-selective vulnerability.


Subject(s)
Chromatin , Neoplasms , Humans , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/chemistry , Proliferating Cell Nuclear Antigen/metabolism , Protein Binding , Neoplasms/drug therapy , DNA , DNA Replication
6.
bioRxiv ; 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37398272

ABSTRACT

The post-translational modification (PTM) of proteins by O-linked ß-N-acetyl-D-glucosamine (O-GlcNAcylation) is widespread across the proteome during the lifespan of all multicellular organisms. However, nearly all functional studies have focused on individual protein modifications, overlooking the multitude of simultaneous O-GlcNAcylation events that work together to coordinate cellular activities. Here, we describe Networking of Interactors and SubstratEs (NISE), a novel, systems-level approach to rapidly and comprehensively monitor O-GlcNAcylation across the proteome. Our method integrates affinity purification-mass spectrometry (AP-MS) and site-specific chemoproteomic technologies with network generation and unsupervised partitioning to connect potential upstream regulators with downstream targets of O-GlcNAcylation. The resulting network provides a data-rich framework that reveals both conserved activities of O-GlcNAcylation such as epigenetic regulation as well as tissue-specific functions like synaptic morphology. Beyond O-GlcNAc, this holistic and unbiased systems-level approach provides a broadly applicable framework to study PTMs and discover their diverse roles in specific cell types and biological states.

7.
Cell Genom ; 3(7): 100329, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37492097

ABSTRACT

Genome regulation involves complex protein interactions that are often mediated through post-translational modifications (PTMs). SUMOylation-modification by the small ubiquitin-like modifier (SUMO)-has been implicated in numerous essential processes in eukaryotes. In Drosophila, SUMO is required for viability and fertility, with its depletion from ovaries leading to heterochromatin loss and ectopic transposon and gene activation. Here, we developed a proteomics-based strategy to uncover the Drosophila ovarian "SUMOylome," which revealed that SUMOylation is widespread among proteins involved in heterochromatin regulation and different aspects of the Piwi-interacting small RNA (piRNA) pathway that represses transposons. Furthermore, we show that SUMOylation of several piRNA pathway proteins occurs in a Piwi-dependent manner. Together, these data highlight broad implications of protein SUMOylation in epigenetic regulation and indicate novel roles of this modification in the cellular defense against genomic parasites. Finally, this work provides a resource for the study of SUMOylation in other biological contexts in the Drosophila model.

8.
BMC Bioinformatics ; 24(1): 239, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37280522

ABSTRACT

BACKGROUND: The analysis of mass spectrometry-based quantitative proteomics data can be challenging given the variety of established analysis platforms, the differences in reporting formats, and a general lack of approachable standardized post-processing analyses such as sample group statistics, quantitative variation and even data filtering. We developed tidyproteomics to facilitate basic analysis, improve data interoperability and potentially ease the integration of new processing algorithms, mainly through the use of a simplified data-object. RESULTS: The R package tidyproteomics was developed as both a framework for standardizing quantitative proteomics data and a platform for analysis workflows, containing discrete functions that can be connected end-to-end, thus making it easier to define complex analyses by breaking them into small stepwise units. Additionally, as with any analysis workflow, choices made during analysis can have large impacts on the results and as such, tidyproteomics allows researchers to string each function together in any order, select from a variety of options and in some cases develop and incorporate custom algorithms. CONCLUSIONS: Tidyproteomics aims to simplify data exploration from multiple platforms, provide control over individual functions and analysis order, and serve as a tool to assemble complex repeatable processing workflows in a logical flow. Datasets in tidyproteomics are easy to work with, have a structure that allows for biological annotations to be added, and come with a framework for developing additional analysis tools. The consistent data structure and accessible analysis and plotting tools also offers a way for researchers to save time on mundane data manipulation tasks.


Subject(s)
Proteomics , Software , Proteomics/methods , Algorithms , Mass Spectrometry/methods , Workflow
9.
Sci Adv ; 9(25): eade7890, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37352349

ABSTRACT

Peptides from degradation of intracellular proteins are continuously displayed by major histocompatibility complex (MHC) class I. To better understand origins of these peptides, we performed a comprehensive census of the class I peptide repertoire in the presence and absence of ubiquitin-proteasome system (UPS) activity upon developing optimized methodology to enrich for and quantify these peptides. Whereas most class I peptides are dependent on the UPS for their generation, a surprising 30%, enriched in peptides of mitochondrial origin, appears independent of the UPS. A further ~10% of peptides were found to be dependent on the proteasome but independent of ubiquitination for their generation. Notably, clinically achievable partial inhibition of the proteasome resulted in display of atypical peptides. Our results suggest that generation of MHC class I•peptide complexes is more complex than previously recognized, with UPS-dependent and UPS-independent components; paradoxically, alternative protein degradation pathways also generate class I peptides when canonical pathways are impaired.


Subject(s)
Antigen Presentation , Proteasome Endopeptidase Complex , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Histocompatibility Antigens Class I/metabolism , Peptides/metabolism , Ubiquitin/metabolism
10.
bioRxiv ; 2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36747623

ABSTRACT

Coinfection with two notorious opportunistic pathogens, the Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus , dominates chronic pulmonary infections. While coinfection is associated with poor patient outcomes, the interspecies interactions responsible for such decline remain unknown. Here, we dissected molecular mechanisms of interspecies sensing between P. aeruginosa and S. aureus . We discovered that P. aeruginosa senses S. aureus secreted peptides and, counterintuitively, moves towards these toxins. P. aeruginosa tolerates such a strategy through "competition sensing", whereby it preempts imminent danger/competition by arming cells with type six secretion (T6S) and iron acquisition systems. Intriguingly, while T6S is predominantly described as weaponry targeting Gram-negative and eukaryotic cells, we find that T6S is essential for full P. aeruginosa competition with S. aureus , a previously undescribed role for T6S. Importantly, competition sensing was activated during coinfection of bronchial epithelia, including T6S islands targeting human cells. This study reveals critical insight into both interspecies competition and how antagonism may cause collateral damage to the host environment.

11.
Science ; 378(6617): 317-322, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36264797

ABSTRACT

In the mitochondrial outer membrane, α-helical transmembrane proteins play critical roles in cytoplasmic-mitochondrial communication. Using genome-wide CRISPR screens, we identified mitochondrial carrier homolog 2 (MTCH2), and its paralog MTCH1, and showed that it is required for insertion of biophysically diverse tail-anchored (TA), signal-anchored, and multipass proteins, but not outer membrane ß-barrel proteins. Purified MTCH2 was sufficient to mediate insertion into reconstituted proteoliposomes. Functional and mutational studies suggested that MTCH2 has evolved from a solute carrier transporter. MTCH2 uses membrane-embedded hydrophilic residues to function as a gatekeeper for the outer membrane, controlling mislocalization of TAs into the endoplasmic reticulum and modulating the sensitivity of leukemia cells to apoptosis. Our identification of MTCH2 as an insertase provides a mechanistic explanation for the diverse phenotypes and disease states associated with MTCH2 dysfunction.


Subject(s)
Apoptosis , Mitochondrial Membrane Transport Proteins , Mitochondrial Membranes , Mitochondrial Membrane Transport Proteins/chemistry , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membranes/metabolism , Humans , Endoplasmic Reticulum/metabolism , K562 Cells
12.
Mol Microbiol ; 118(4): 321-335, 2022 10.
Article in English | MEDLINE | ID: mdl-36271736

ABSTRACT

Pseudomonas aeruginosa is an opportunistic bacterial pathogen that often encounters hypoxic/anoxic environments within the host, which increases its tolerance to many conventional antibiotics. Toward identifying novel treatments, we explored the therapeutic potential of chlorate, a pro-drug that kills hypoxic/anoxic, antibiotic-tolerant P. aeruginosa populations. While chlorate itself is relatively nontoxic, it is enzymatically reduced to the toxic oxidizing agent, chlorite, by hypoxically induced nitrate reductase. To better assess chlorate's therapeutic potential, we investigated mechanisms of chlorate toxicity and resistance in P. aeruginosa. We used transposon mutagenesis to identify genes that alter P. aeruginosa fitness during chlorate treatment, finding that methionine sulfoxide reductases (Msr), which repair oxidized methionine residues, support survival during chlorate stress. Chlorate treatment leads to proteome-wide methionine oxidation, which is exacerbated in a ∆msrA∆msrB strain. In response to chlorate, P. aeruginosa upregulates proteins involved in a wide range of functions, including metabolism, DNA replication/repair, protein repair, transcription, and translation, and these newly synthesized proteins are particularly vulnerable to methionine oxidation. The addition of exogenous methionine partially rescues P. aeruginosa survival during chlorate treatment, suggesting that widespread methionine oxidation contributes to death. Finally, we found that mutations that decrease nitrate reductase activity are a common mechanism of chlorate resistance.


Subject(s)
Chlorates , Prodrugs , Chlorates/metabolism , Chlorates/pharmacology , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Methionine Sulfoxide Reductases/genetics , Proteome , Nitrates/metabolism , Nitrate Reductase , Anti-Bacterial Agents/pharmacology , Oxidants , Methionine
13.
Proc Natl Acad Sci U S A ; 119(36): e2205608119, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36037385

ABSTRACT

Cop9 signalosome (CSN) regulates the function of cullin-RING E3 ubiquitin ligases (CRLs) by deconjugating the ubiquitin-like protein NEDD8 from the cullin subunit. To understand the physiological impact of CSN function on the CRL network and cell proliferation, we combined quantitative mass spectrometry and genome-wide CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) screens to identify factors that modulate cell viability upon inhibition of CSN by the small molecule CSN5i-3. CRL components and regulators strongly modulated the antiproliferative effects of CSN5i-3, and in addition we found two pathways involved in genome integrity, SCFFBXO5-APC/C-GMNN and CUL4DTL-SETD8, that contribute substantially to the toxicity of CSN inhibition. Our data highlight the importance of CSN-mediated NEDD8 deconjugation and adaptive exchange of CRL substrate receptors in sustaining CRL function and suggest approaches for leveraging CSN inhibition for the treatment of cancer.


Subject(s)
DNA Replication , Ubiquitin-Protein Ligases , Azepines/metabolism , COP9 Signalosome Complex/antagonists & inhibitors , COP9 Signalosome Complex/genetics , COP9 Signalosome Complex/metabolism , Cell Survival , Cullin Proteins/genetics , Cullin Proteins/metabolism , Imidazoles/metabolism , NEDD8 Protein/metabolism , Pyrazoles/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
14.
iScience ; 25(8): 104756, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35942092

ABSTRACT

The removal of the N-terminal formyl group on nascent proteins by peptide deformylase (PDF) is the most prevalent protein modification in bacteria. PDF is a critical target of antibiotic development; however, its role in bacterial physiology remains a long-standing question. This work used the time-resolved analyses of the Escherichia coli translatome and proteome to investigate the consequences of PDF inhibition. Loss of PDF activity rapidly induces cellular stress responses, especially those associated with protein misfolding and membrane defects, followed by a global down-regulation of metabolic pathways. Rapid membrane hyperpolarization and impaired membrane integrity were observed shortly after PDF inhibition, suggesting that the plasma membrane disruption is the most immediate and primary consequence of formyl group retention on nascent proteins. This work resolves the physiological function of a ubiquitous protein modification and uncovers its crucial role in maintaining the structure and function of the bacterial membrane.

15.
J Inorg Biochem ; 234: 111886, 2022 09.
Article in English | MEDLINE | ID: mdl-35675741

ABSTRACT

The SARS-CoV-2 main protease (Mpro) is responsible for cleaving twelve nonstructural proteins from the viral polyprotein. Mpro, a cysteine protease, is characterized by a large number of noncatalytic cysteine (Cys) residues, none involved in disulfide bonds. In the absence of a tertiary-structure stabilizing role for these residues, a possible alternative is that they are involved in redox processes. We report experimental work in support of a proposal that surface cysteines on Mpro can protect the active-site Cys145 from oxidation by reactive oxygen species (ROS). In investigations of enzyme kinetics, we found that mutating three surface cysteines to serines did not greatly affect activity, which in turn indicates that these cysteines could protect Cys145 from oxidative damage.


Subject(s)
Coronavirus 3C Proteases , Cysteine , Oxidative Stress , SARS-CoV-2 , Coronavirus 3C Proteases/chemistry , Cysteine/chemistry , Protease Inhibitors , SARS-CoV-2/enzymology
16.
Nat Chem Biol ; 17(12): 1271-1280, 2021 12.
Article in English | MEDLINE | ID: mdl-34799735

ABSTRACT

Oxysterols (OHCs) are hydroxylated cholesterol metabolites that play ubiquitous roles in health and disease. Due to the non-covalent nature of their interactions and their unique partitioning in membranes, the analysis of live-cell, proteome-wide interactions of OHCs remains an unmet challenge. Here, we present a structurally precise chemoproteomics probe for the biologically active molecule 20(S)-hydroxycholesterol (20(S)-OHC) and provide a map of its proteome-wide targets in the membranes of living cells. Our target catalog consolidates diverse OHC ontologies and demonstrates that OHC-interacting proteins cluster with specific processes in immune response and cancer. Competition experiments reveal that 20(S)-OHC is a chemo-, regio- and stereoselective ligand for the protein transmembrane protein 97 (Tmem97/the σ2 receptor), enabling us to reconstruct the 20(S)-OHC-Tmem97 binding site. Our results demonstrate that multiplexed, quantitative analysis of cellular target engagement can expose new dimensions of metabolite activity and identify actionable targets for molecular therapy.


Subject(s)
Hydroxycholesterols/chemistry , Proteome/chemistry , 3T3 Cells , Animals , Cell Communication , Cell Membrane/metabolism , Click Chemistry , Diazomethane/chemistry , HEK293 Cells , Humans , Ligands , Mice , Pyridinium Compounds/chemistry , Streptavidin/chemistry
17.
Appl Environ Microbiol ; 87(15): e0020021, 2021 07 13.
Article in English | MEDLINE | ID: mdl-33990310

ABSTRACT

Characterizing the cell-level metabolic trade-offs that phytoplankton exhibit in response to changing environmental conditions is important for predicting the impact of these changes on marine food web dynamics and biogeochemical cycling. The time-selective proteome-labeling approach, bioorthogonal noncanonical amino acid tagging (BONCAT), has potential to provide insight into differential allocation of resources at the cellular level, especially when coupled with proteomics. However, the application of this technique in marine phytoplankton remains limited. We demonstrate that the marine cyanobacteria Synechococcus sp. and two groups of eukaryotic algae take up the modified amino acid l-homopropargylglycine (HPG), suggesting that BONCAT can be used to detect translationally active phytoplankton. However, the impact of HPG addition on growth dynamics varied between groups of phytoplankton. In addition, proteomic analysis of Synechococcus cells grown with HPG revealed a physiological shift in nitrogen metabolism, general protein stress, and energy production, indicating a potential limitation for the use of BONCAT in understanding the cell-level response of Synechococcus sp. to environmental change. Variability in HPG sensitivity between algal groups and the impact of HPG on Synechococcus physiology indicates that particular considerations should be taken when applying this technique to other marine taxa or mixed marine microbial communities. IMPORTANCE Phytoplankton form the base of the marine food web and substantially impact global energy and nutrient flow. Marine picocyanobacteria of the genus Synechococcus comprise a large portion of phytoplankton biomass in the ocean and therefore are important model organisms. The technical challenges of environmental proteomics in mixed microbial communities have limited our ability to detect the cell-level adaptations of phytoplankton communities to a changing environment. The proteome labeling technique, bioorthogonal noncanonical amino acid tagging (BONCAT), has potential to address some of these challenges by simplifying proteomic analyses. This study explores the ability of marine phytoplankton to take up the modified amino acid, l-homopropargylglycine (HPG), required for BONCAT, and investigates the proteomic response of Synechococcus to HPG. We not only demonstrate that cyanobacteria can take up HPG but also highlight the physiological impact of HPG on Synechococcus, which has implications for future applications of this technique in the marine environment.


Subject(s)
Alkynes/pharmacology , Glycine/analogs & derivatives , Phytoplankton/drug effects , Stress, Physiological/drug effects , Synechococcus/drug effects , Bacterial Proteins/metabolism , Glycine/pharmacology , Nitrogen/metabolism , Phytoplankton/metabolism , Proteome/drug effects , Proteomics , Synechococcus/growth & development , Synechococcus/metabolism
18.
Nat Commun ; 12(1): 265, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33431889

ABSTRACT

Most mitochondrial precursor polypeptides are imported from the cytosol into the mitochondrion, where they must efficiently undergo folding. Mitochondrial precursors are imported as unfolded polypeptides. For proteins of the mitochondrial matrix and inner membrane, two separate chaperone systems, HSP60 and mitochondrial HSP70 (mtHSP70), facilitate protein folding. We show that LONP1, an AAA+ protease of the mitochondrial matrix, works with the mtHSP70 chaperone system to promote mitochondrial protein folding. Inhibition of LONP1 results in aggregation of a protein subset similar to that caused by knockdown of DNAJA3, a co-chaperone of mtHSP70. LONP1 is required for DNAJA3 and mtHSP70 solubility, and its ATPase, but not its protease activity, is required for this function. In vitro, LONP1 shows an intrinsic chaperone-like activity and collaborates with mtHSP70 to stabilize a folding intermediate of OXA1L. Our results identify LONP1 as a critical factor in the mtHSP70 folding pathway and demonstrate its proposed chaperone activity.


Subject(s)
ATP-Dependent Proteases/metabolism , HSP70 Heat-Shock Proteins/metabolism , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/metabolism , Protein Folding , Cell Line , Electron Transport Complex IV , HSP40 Heat-Shock Proteins , Humans , NADH Dehydrogenase , Nuclear Proteins , Protein Aggregates , Protein Binding , Signal Transduction , Solubility
19.
Mol Pharm ; 18(1): 214-227, 2021 01 04.
Article in English | MEDLINE | ID: mdl-33320673

ABSTRACT

There is currently no cure or effective treatment available for mucopolysaccharidosis type IIID (MPS IIID, Sanfilippo syndrome type D), a lysosomal storage disorder (LSD) caused by the deficiency of α-N-acetylglucosamine-6-sulfatase (GNS). The clinical symptoms of MPS IIID, like other subtypes of Sanfilippo syndrome, are largely localized to the central nervous system (CNS), and any treatments aiming to ameliorate or reverse the catastrophic and fatal neurologic decline caused by this disease need to be delivered across the blood-brain barrier. Here, we report a proof-of-concept enzyme replacement therapy (ERT) for MPS IIID using recombinant human α-N-acetylglucosamine-6-sulfatase (rhGNS) via intracerebroventricular (ICV) delivery in a neonatal MPS IIID mouse model. We overexpressed and purified rhGNS from CHO cells with a specific activity of 3.9 × 104 units/mg protein and a maximal enzymatic activity at lysosomal pH (pH 5.6), which was stable for over one month at 4 °C in artificial cerebrospinal fluid (CSF). We demonstrated that rhGNS was taken up by MPS IIID patient fibroblasts via the mannose 6-phosphate (M6P) receptor and reduced intracellular glycosaminoglycans to normal levels. The delivery of 5 µg of rhGNS into the lateral cerebral ventricle of neonatal MPS IIID mice resulted in normalization of the enzymatic activity in brain tissues; rhGNS was found to be enriched in lysosomes in MPS IIID-treated mice relative to the control. Furthermore, a single dose of rhGNS was able to reduce the accumulated heparan sulfate and ß-hexosaminidase. Our results demonstrate that rhGNS delivered into CSF is a potential therapeutic option for MPS IIID that is worthy of further development.


Subject(s)
Mucopolysaccharidosis III/drug therapy , Recombinant Proteins/pharmacology , Sulfatases/pharmacology , Animals , Animals, Newborn , Brain/drug effects , Brain/metabolism , CHO Cells , Cricetulus , Disease Models, Animal , Enzyme Replacement Therapy/methods , Glycosaminoglycans/metabolism , Heparitin Sulfate/metabolism , Humans , Liver/drug effects , Liver/metabolism , Lysosomal Storage Diseases/drug therapy , Lysosomal Storage Diseases/metabolism , Lysosomes/drug effects , Lysosomes/metabolism , Mice , Mucopolysaccharidosis III/metabolism , Neurons/drug effects , Neurons/metabolism , Receptor, IGF Type 2/metabolism
20.
Proc Natl Acad Sci U S A ; 117(22): 12269-12280, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32409602

ABSTRACT

In multiple sclerosis (MS), Th17 cells are critical drivers of autoimmune central nervous system (CNS) inflammation and demyelination. Th17 cells exhibit functional heterogeneity fostering both pathogenic and nonpathogenic, tissue-protective functions. Still, the factors that control Th17 pathogenicity remain incompletely defined. Here, using experimental autoimmune encephalomyelitis, an established mouse MS model, we report that therapeutic administration of activin-A ameliorates disease severity and alleviates CNS immunopathology and demyelination, associated with decreased activation of Th17 cells. In fact, activin-A signaling through activin-like kinase-4 receptor represses pathogenic transcriptional programs in Th17-polarized cells, while it enhances antiinflammatory gene modules. Whole-genome profiling and in vivo functional studies revealed that activation of the ATP-depleting CD39 and CD73 ectonucleotidases is essential for activin-A-induced suppression of the pathogenic signature and the encephalitogenic functions of Th17 cells. Mechanistically, the aryl hydrocarbon receptor, along with STAT3 and c-Maf, are recruited to promoter elements on Entpd1 and Nt5e (encoding CD39 and CD73, respectively) and other antiinflammatory genes, and control their expression in Th17 cells in response to activin-A. Notably, we show that activin-A negatively regulates the metabolic sensor, hypoxia-inducible factor-1α, and key inflammatory proteins linked to pathogenic Th17 cell states. Of translational relevance, we demonstrate that activin-A is induced in the CNS of individuals with MS and restrains human Th17 cell responses. These findings uncover activin-A as a critical controller of Th17 cell pathogenicity that can be targeted for the suppression of autoimmune CNS inflammation.


Subject(s)
5'-Nucleotidase/metabolism , Activins/pharmacology , Antigens, CD/metabolism , Apyrase/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Inflammation/prevention & control , Multiple Sclerosis/immunology , Th17 Cells/immunology , Animals , Cell Differentiation , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , GPI-Linked Proteins/metabolism , Humans , Inflammation/immunology , Inflammation/metabolism , Inflammation/pathology , Mice , Mice, Inbred C57BL , Multiple Sclerosis/drug therapy , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Th17 Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...