Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 4256, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383577

ABSTRACT

Efficient fiber-to-chip couplers for multi-port access to photonic integrated circuits are paramount for a broad class of applications, ranging, e.g., from telecommunication to photonic computing and quantum technologies. Grating-based approaches are often desirable for providing out-of-plane access to the photonic circuits. However, on photonic platforms characterized by a refractive index ≃ 2 at telecom wavelength, such as silicon nitride or thin-film lithium niobate, the limited scattering strength has thus far hindered the achievement of coupling efficiencies comparable to the ones attainable in silicon photonics. Here we present a flexible strategy for the realization of highly efficient grating couplers on such low-index photonic platforms. To simultaneously reach a high scattering efficiency and a near-unitary modal overlap with optical fibers, we make use of self-imaging gratings designed with a negative diffraction angle. To ensure high directionality of the diffracted light, we take advantage of a metal back-reflector patterned underneath the grating structure by cryogenic deep reactive ion etching of the silicon handle. Using silicon nitride as a testbed material, we experimentally demonstrate coupling efficiency up to - 0.55 dB in the telecom C-band with high chip-scale device yield.

2.
Sci Adv ; 9(42): eadi9127, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37862413

ABSTRACT

We present an adaptive optical neural network based on a large-scale event-driven architecture. In addition to changing the synaptic weights (synaptic plasticity), the optical neural network's structure can also be reconfigured enabling various functionalities (structural plasticity). Key building blocks are wavelength-addressable artificial neurons with embedded phase-change materials that implement nonlinear activation functions and nonvolatile memory. Using multimode focusing, the activation function features both excitatory and inhibitory responses and shows a reversible switching contrast of 3.2 decibels. We train the neural network to distinguish between English and German text samples via an evolutionary algorithm. We investigate both the synaptic and structural plasticity during the training process. On the basis of this concept, we realize a large-scale network consisting of 736 subnetworks with 16 phase-change material neurons each. Overall, 8398 neurons are functional, highlighting the scalability of the photonic architecture.

3.
Sci Adv ; 9(19): eadg7268, 2023 May 12.
Article in English | MEDLINE | ID: mdl-37172083

ABSTRACT

Scalable photonic quantum computing architectures pose stringent requirements on photonic processing devices. The needs for low-loss high-speed reconfigurable circuits and near-deterministic resource state generators are some of the most challenging requirements. Here, we develop an integrated photonic platform based on thin-film lithium niobate and interface it with deterministic solid-state single-photon sources based on quantum dots in nanophotonic waveguides. The generated photons are processed with low-loss circuits programmable at speeds of several gigahertz. We realize a variety of key photonic quantum information processing functionalities with the high-speed circuits, including on-chip quantum interference, photon demultiplexing, and reprogrammability of a four-mode universal photonic circuit. These results show a promising path forward for scalable photonic quantum technologies by merging integrated photonics with solid-state deterministic photon sources in a heterogeneous approach to scaling up.

4.
Opt Lett ; 47(7): 1766-1769, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35363730

ABSTRACT

We study degenerate spontaneous parametric downconversion in a structure composed of two linearly uncoupled resonators, in which the linear properties of the fundamental and second-harmonic field can be engineered independently. As an example, we show that in this system it is simple to generate photon pairs that are nearly uncorrelated in energy. These results extend the use of linearly uncoupled resonators to the case of second-order nonlinear interactions.

5.
Nat Commun ; 12(1): 6847, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34824247

ABSTRACT

Lithium-Niobate-On-Insulator (LNOI) is emerging as a promising platform for integrated quantum photonic technologies because of its high second-order nonlinearity and compact waveguide footprint. Importantly, LNOI allows for creating electro-optically reconfigurable circuits, which can be efficiently operated at cryogenic temperature. Their integration with superconducting nanowire single-photon detectors (SNSPDs) paves the way for realizing scalable photonic devices for active manipulation and detection of quantum states of light. Here we demonstrate integration of these two key components in a low loss (0.2 dB/cm) LNOI waveguide network. As an experimental showcase of our technology, we demonstrate the combined operation of an electrically tunable Mach-Zehnder interferometer and two waveguide-integrated SNSPDs at its outputs. We show static reconfigurability of our system with a bias-drift-free operation over a time of 12 hours, as well as high-speed modulation at a frequency up to 1 GHz. Our results provide blueprints for implementing complex quantum photonic devices on the LNOI platform.

6.
Opt Express ; 29(13): 20205-20216, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34266114

ABSTRACT

Lithium-niobate-on-insulator (LNOI) has emerged as a promising platform in the field of integrated photonics. Nonlinear optical processes and fast electro-optic modulation have been reported with outstanding performance in ultra-low loss waveguides. In order to harness the advantages offered by the LNOI technology, suitable fiber-to-chip interconnects operating at different wavelength ranges are demanded. Here we present easily manufacturable, self-imaging apodized grating couplers, featuring a coupling efficiency of the TE0 mode as high as ≃47.1% at λ=1550 nm and ≃44.9% at λ=775 nm. Our approach avoids the use of any metal back-reflector for an improved directivity or multi-layer structures for an enhanced grating strength.

SELECTION OF CITATIONS
SEARCH DETAIL
...