Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Inorg Biochem ; 100(7): 1234-43, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16584782

ABSTRACT

The redox behavior of two synthetic manganese complexes illustrates a mechanistic aspect of importance for light-driven water oxidation in Photosystem II (PSII) and design of biomimetic systems (artificial photosynthesis). The coupling between changes in oxidation state and structural changes was investigated for two binuclear manganese complexes (1 and 2), which differ in the set of first sphere ligands to Mn (N(3)O(3) in 1, N(2)O(4) in 2). Both complexes were studied by electron paramagnetic resonance (EPR) and X-ray absorption spectroscopy (XAS) in three oxidation states which had been previously prepared either electro- or photochemically. The following bridging-type changes are suggested. In 1: Mn(II)-(mu-OR)(mu-OCO)(2)-Mn(II)<-->Mn(II)-(mu-OR)(mu-OCO)(2)-Mn(III)-->Mn(III)-(mu-OR)(mu-OCO)(mu-O)-Mn(III). In 2: Mn(II)-(mu-OR)(mu-OCO)(2)-Mn(III)<-->Mn(III)-(mu-OR)(mu-OCO)(2)-Mn(III)-->Mn(III)-(mu-OR)(mu-OCO)(mu-O)-Mn(IV). In both complexes, the first one-electron oxidation proceeds without bridging-type change, but involves a redox-potential increase by 0.5-1V. The second one-electron oxidation likely is coupled to mu-oxo-bridge (or mu-OH) formation which seems to counteract a further potential increase. In both complexes, mu-O(H) bridge formation is associated with a redox transition proceeding at approximately 1V, but the mu-O(H) bridge is observed at the Mn(2)(III,III) level in 1 and at the Mn(III,IV) level in 2, demonstrating modulation of the redox behavior by the terminal ligands. It is proposed that also in PSII bridging-type changes facilitate successive oxidation steps at approximately the same potential.


Subject(s)
Manganese/chemistry , Photosynthesis , Electrochemistry , Electron Spin Resonance Spectroscopy , Oxidation-Reduction , Water/chemistry
2.
J Inorg Biochem ; 91(1): 159-72, 2002 Jul 25.
Article in English | MEDLINE | ID: mdl-12121773

ABSTRACT

To model the structural and functional parts of the water oxidizing complex in Photosystem II, a dimeric manganese(II,II) complex (1) was linked to a ruthenium(II)tris-bipyridine (Ru(II)(bpy)(3)) complex via a substituted L-tyrosine, to form the trinuclear complex 2 [J. Inorg. Biochem. 78 (2000) 15]. Flash photolysis of 1 and Ru(II)(bpy)(3) in aqueous solution, in the presence of an electron acceptor, resulted in the stepwise extraction of three electrons by Ru(III)(bpy)(3) from the Mn(2)(II,II) dimer, which then attained the Mn(2)(III,IV) oxidation state. In a similar experiment with compound 2, the dinuclear Mn complex reduced the photo-oxidized Ru moiety via intramolecular electron transfer on each photochemical event. From EPR it was seen that 2 also reached the Mn(2)(III,IV) state. Our data indicate that oxidation from the Mn(2)(II,II) state proceeds stepwise via intermediate formation of Mn(2)(II,III) and Mn(2)(III,III). In the presence of water, cyclic voltammetry showed an additional anodic peak beyond Mn(2)(II,III/III,III) oxidation which was significantly lower than in neat acetonitrile. Assuming that this peak is due to oxidation to Mn(2)(III,IV), this suggests that water is essential for the formation of the Mn(2)(III,IV) oxidation state. Compound 2 is a structural mimic of the water oxidizing complex, in that it links a Mn complex via a tyrosine to a highly oxidizing photosensitizer. Complex 2 also mimics mechanistic aspects of Photosystem II, in that the electron transfer to the photosensitizer is fast and results in several electron extractions from the Mn moiety.


Subject(s)
2,2'-Dipyridyl/analogs & derivatives , 2,2'-Dipyridyl/chemistry , Manganese/chemistry , Organometallic Compounds/chemistry , Photosynthetic Reaction Center Complex Proteins/chemistry , Acetonitriles/chemistry , Electrochemistry , Electron Spin Resonance Spectroscopy , Lead/chemistry , Light , Macromolecular Substances , Molecular Structure , Oxidants/chemistry , Oxidation-Reduction , Photochemistry , Photosystem II Protein Complex , Ruthenium/chemistry , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...