Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 6143, 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39034309

ABSTRACT

Wolfram syndrome is a rare genetic disease caused by mutations in the WFS1 or CISD2 gene. A primary defect in Wolfram syndrome involves poor ER Ca2+ handling, but how this disturbance leads to the disease is not known. The current study, performed in primary neurons, the most affected and disease-relevant cells, involving both Wolfram syndrome genes, explains how the disturbed ER Ca2+ handling compromises mitochondrial function and affects neuronal health. Loss of ER Ca2+ content and impaired ER-mitochondrial contact sites in the WFS1- or CISD2-deficient neurons is associated with lower IP3R-mediated Ca2+ transfer from ER to mitochondria and decreased mitochondrial Ca2+ uptake. In turn, reduced mitochondrial Ca2+ content inhibits mitochondrial ATP production leading to an increased NADH/NAD+ ratio. The resulting bioenergetic deficit and reductive stress compromise the health of the neurons. Our work also identifies pharmacological targets and compounds that restore Ca2+ homeostasis, enhance mitochondrial function and improve neuronal health.


Subject(s)
Calcium , Endoplasmic Reticulum , Membrane Proteins , Mitochondria , Neurons , Wolfram Syndrome , Wolfram Syndrome/metabolism , Wolfram Syndrome/genetics , Calcium/metabolism , Mitochondria/metabolism , Endoplasmic Reticulum/metabolism , Animals , Neurons/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice , Humans , Adenosine Triphosphate/metabolism , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Inositol 1,4,5-Trisphosphate Receptors/genetics , Mice, Knockout , NAD/metabolism , Calcium Signaling
2.
BBA Adv ; 4: 100105, 2023.
Article in English | MEDLINE | ID: mdl-37842182

ABSTRACT

INPP5K (inositol polyphosphate 5-phosphatase K) is an endoplasmic reticulum (ER)-resident enzyme that acts as a phosphoinositide (PI) 5-phosphatase, capable of dephosphorylating various PIs including PI 4,5-bisphosphate (PI(4,5)P2), a key phosphoinositide found in the plasma membrane. Given its ER localization and substrate specificity, INPP5K may play a role in ER-plasma membrane contact sites. Furthermore, PI(4,5)P2 serves as a substrate for phospholipase C, an enzyme activated downstream of extracellular agonists acting on Gq-coupled receptors or tyrosine-kinase receptors, leading to IP3 production and subsequent release of Ca2+ from the ER, the primary intracellular Ca2+ storage organelle. In this study, we investigated the impact of INPP5K on ER Ca2+ dynamics using a previously established INPP5K-knockdown U-251 MG glioblastoma cell model. We here describe that loss of INPP5K impairs agonist-induced, IP3 receptor (IP3R)-mediated Ca2+ mobilization in intact cells, while the ER Ca2+ content and store-operated Ca2+ influx remain unaffected. To further elucidate the underlying mechanisms, we examined Ca2+ release in permeabilized cells stimulated with exogenous IP3. Interestingly, the absence of INPP5K also disrupted IP3-induced Ca2+ release events. These results suggest that INPP5K may directly influence IP3R activity through mechanisms yet to be resolved. The findings from this study point towards role of INPP5K in modulating ER calcium dynamics, particularly in relation to IP3-mediated signaling pathways. However, further work is needed to establish the general nature of our findings and to unravel the exact molecular mechanisms underlying the interplay between INNP5K function and Ca2+ signaling.

3.
Cell Calcium ; 112: 102743, 2023 06.
Article in English | MEDLINE | ID: mdl-37126911

ABSTRACT

Endoplasmic reticulum (ER)-mitochondria contact sites are crucial to allow Ca2+ flux between them and a plethora of proteins participate in tethering both organelles together. Inositol 1,4,5-trisphosphate receptors (IP3Rs) play a pivotal role at such contact sites, participating in both ER-mitochondria tethering and as Ca2+-transport system that delivers Ca2+ from the ER towards mitochondria. At the ER-mitochondria contact sites, the IP3Rs function as a multi-protein complex linked to the voltage-dependent anion channel 1 (VDAC1) in the outer mitochondrial membrane, via the chaperone glucose-regulated protein 75 (GRP75). This IP3R-GRP75-VDAC1 complex supports the efficient transfer of Ca2+ from the ER into the mitochondrial intermembrane space, from which the Ca2+ ions can reach the mitochondrial matrix through the mitochondrial calcium uniporter. Under physiological conditions, basal Ca2+ oscillations deliver Ca2+ to the mitochondrial matrix, thereby stimulating mitochondrial oxidative metabolism. However, when mitochondrial Ca2+ overload occurs, the increase in [Ca2+] will induce the opening of the mitochondrial permeability transition pore, thereby provoking cell death. The IP3R-GRP75-VDAC1 complex forms a hub for several other proteins that stabilize the complex and/or regulate the complex's ability to channel Ca2+ into the mitochondria. These proteins and their mechanisms of action are discussed in the present review with special attention for their role in pathological conditions and potential implication for therapeutic strategies.


Subject(s)
Endoplasmic Reticulum , Mitochondria , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Mitochondria/metabolism , Endoplasmic Reticulum/metabolism , Mitochondrial Membranes/metabolism , Cell Death , Calcium/metabolism , Calcium Signaling/physiology
4.
Cells ; 11(12)2022 06 18.
Article in English | MEDLINE | ID: mdl-35741091

ABSTRACT

Calcium ions (Ca2+) operate as important messengers in the cell, indispensable for signaling the underlying numerous cellular processes in all of the cell types in the human body. In neurons, Ca2+ signaling is crucial for regulating synaptic transmission and for the processes of learning and memory formation. Hence, the dysregulation of intracellular Ca2+ homeostasis results in a broad range of disorders, including cancer and neurodegeneration. A major source for intracellular Ca2+ is the endoplasmic reticulum (ER), which has close contacts with other organelles, including mitochondria. In this review, we focus on the emerging role of Ca2+ signaling at the ER-mitochondrial interface in two different neurodegenerative diseases, namely Alzheimer's disease and Wolfram syndrome. Both of these diseases share some common hallmarks in the early stages, including alterations in the ER and mitochondrial Ca2+ handling, mitochondrial dysfunction and increased Reactive oxygen species (ROS) production. This indicates that similar mechanisms may underly these two disease pathologies and suggests that both research topics might benefit from complementary research.


Subject(s)
Alzheimer Disease , Wolfram Syndrome , Alzheimer Disease/metabolism , Calcium/metabolism , Endoplasmic Reticulum/metabolism , Homeostasis , Humans , Wolfram Syndrome/metabolism
6.
Sci Signal ; 14(702): eabc6165, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34582248

ABSTRACT

Mutations in WFS1 (which encodes Wolframin, WFS1) and CISD2 (which encodes CDGSH iron sulfur domain 2) result in Wolfram syndrome (WS), a rare genetic disorder that starts with juvenile diabetes and progresses to neurological dysfunction. WFS1 and CISD2 belong to different protein families with distinct properties. Despite differences between WFS1 and CISD2, loss-of-function mutations in these proteins result in similar disease phenotypes, suggesting that they have convergent roles. WFS1 and CISD2 both localize at the endoplasmic reticulum (ER), the main intracellular calcium (Ca2+) store, which is implicated in several diseases, including WS. Here, we not only review the roles of WFS1 and CISD2 in Ca2+ signaling modulation but also point out knowledge gaps. Because WFS1 and CISD2 form complexes with Ca2+ transporters and Ca2+ channels, it is thought that they influence the activity of these transport systems in cells. Together, the studies reviewed here provide a better understanding of the pathogenesis and the severe disease burden of WS and may contribute to the development of therapeutics.


Subject(s)
Wolfram Syndrome , Humans , Membrane Proteins/genetics , Signal Transduction , Wolfram Syndrome/genetics
7.
Trends Cell Biol ; 31(7): 598-612, 2021 07.
Article in English | MEDLINE | ID: mdl-33678551

ABSTRACT

Organelles cooperate with each other to control cellular homeostasis and cell functions by forming close connections through membrane contact sites. Important contacts are present between the endoplasmic reticulum (ER), the main intracellular Ca2+-storage organelle, and the mitochondria, the organelle responsible not only for the majority of cellular ATP production but also for switching on cell death processes. Several Ca2+-transport systems focalize at these contact sites, thereby enabling the efficient transmission of Ca2+ signals from the ER toward mitochondria. This provides tight control of mitochondrial functions at the microdomain level. Here, we discuss how ER-mitochondrial Ca2+ transfers support cell function and how their dysregulation underlies, drives, or contributes to pathogenesis and pathophysiology, with a major focus on cancer and neurodegeneration but also with attention to other diseases such as diabetes and rare genetic diseases.


Subject(s)
Calcium Signaling , Calcium , Calcium/metabolism , Endoplasmic Reticulum/metabolism , Mitochondria/metabolism , Mitochondrial Membranes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...