Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2743: 223-237, 2024.
Article in English | MEDLINE | ID: mdl-38147219

ABSTRACT

The modified cysteinyl-labeling assay enables the labeling, enrichment, and detection of all members of the protein tyrosine phosphatase (PTP) superfamily that become reversibly oxidized in cells to facilitate phosphorylation-dependent signaling. In this chapter, we describe the method in detail and highlight the pitfalls of avoiding post-lysis oxidation of PTPs to measure the dynamic and transient oxidation and reduction of PTPs in cell signaling.


Subject(s)
Protein Tyrosine Phosphatases , Signal Transduction , Biological Assay , Cell Death , Oxidation-Reduction
2.
Sci Signal ; 15(730): eabn6875, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35439023

ABSTRACT

Increased production of reactive oxygen species plays an essential role in the pathogenesis of several diseases, including cardiac hypertrophy. In our search to identify redox-sensitive targets that contribute to redox signaling, we found that protein tyrosine phosphatase 1B (PTP1B) was reversibly oxidized and inactivated in hearts undergoing hypertrophy. Cardiomyocyte-specific deletion of PTP1B in mice (PTP1B cKO mice) caused a hypertrophic phenotype that was exacerbated by pressure overload. Furthermore, we showed that argonaute 2 (AGO2), a key component of the RNA-induced silencing complex, was a substrate of PTP1B in cardiomyocytes and in the heart. Our results revealed that phosphorylation at Tyr393 and inactivation of AGO2 in PTP1B cKO mice prevented miR-208b-mediated repression of thyroid hormone receptor-associated protein 1 (THRAP1; also known as MED13) and contributed to thyroid hormone-mediated cardiac hypertrophy. In support of this conclusion, inhibiting the synthesis of triiodothyronine (T3) with propylthiouracil rescued pressure overload-induced hypertrophy and improved myocardial contractility and systolic function in PTP1B cKO mice. Together, our data illustrate that PTP1B activity is cardioprotective and that redox signaling is linked to thyroid hormone responsiveness and microRNA-mediated gene silencing in pathological hypertrophy.


Subject(s)
MicroRNAs , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Animals , Cardiomegaly/metabolism , Mediator Complex , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism
3.
Curr Protoc Chem Biol ; 12(3): e84, 2020 09.
Article in English | MEDLINE | ID: mdl-32805074

ABSTRACT

The reversible oxidation of protein tyrosine phosphatases (PTPs) impairs their ability to dephosphorylate substrates in vivo. This transient inactivation of PTPs occurs as their conserved catalytic cysteine residue reacts with cellular oxidants thereby abolishing the ability of this reactive cysteine to attack the phosphate of the target substrate. Hence, in vivo, the inhibition of specific PTPs in response to regulated and localized rises in cellular oxidants enables phospho-dependent signaling. We present assays that measure the endogenous activity of specific PTPs that become transiently inactivated in cells exposed to growth factors. Here, we describe the methods and highlight the pitfalls to avoid post-lysis oxidation of PTPs in order to assess the inactivation and the reactivation of PTPs targeted by cellular oxidants in signal transduction. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Cell transfection (optional) Support Protocol: Preparation of degassed lysis buffers Basic Protocol 2: Cellular extraction in anaerobic conditions Basic Protocol 3: Enrichment and activity assay of specific PTPs Alternate Protocol: Measurement of active PTPs via direct cysteinyl labeling.


Subject(s)
Protein Tyrosine Phosphatases/chemistry , Protein Tyrosine Phosphatases/metabolism , HEK293 Cells , Humans , Oxidation-Reduction
4.
Nat Chem Biol ; 16(2): 122-125, 2020 02.
Article in English | MEDLINE | ID: mdl-31873221

ABSTRACT

We have identified a molecular interaction between the reversibly oxidized form of protein tyrosine phosphatase 1B (PTP1B) and 14-3-3ζ that regulates PTP1B activity. Destabilizing the transient interaction between 14-3-3ζ and PTP1B prevented PTP1B inactivation by reactive oxygen species and decreased epidermal growth factor receptor phosphorylation. Our data suggest that destabilizing the interaction between 14-3-3ζ and the reversibly oxidized and inactive form of PTP1B may establish a path to PTP1B activation in cells.


Subject(s)
Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , 14-3-3 Proteins/metabolism , Biotinylation , Enzyme Activation , ErbB Receptors/metabolism , HEK293 Cells , Humans , Oxidation-Reduction , Phosphorylation , Protein Interaction Maps , Protein Tyrosine Phosphatase, Non-Receptor Type 1/chemistry , Reactive Oxygen Species/metabolism , Serine/metabolism , Tyrosine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...