Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 263
Filter
1.
J Alzheimers Dis ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38848187

ABSTRACT

Background: Brain imaging studies may provide etiologic insight into observed links between lung function and dementia and stroke. Objective: We evaluated associations of lung function measures with brain MRI markers of vascular and neurodegenerative disease in the ARIC Neurocognitive Study, as few studies have examined the associations. Methods: Lung function was measured at participants' midlife in 1990-1992 (mean age = 56±5 years) and later-life in 2011-2013 (mean age = 76±5 years), and brain MRI was performed in 2011-2013. Linear regression models were used to examine the associations of lung function with brain and white matter hyperintensity (WMH) volumes, and logistic regression models were used for cerebral infarcts and microbleeds, adjusting for potential confounders. Results: In cross-sectional analysis (i.e., examining later-life lung function and MRI markers, n = 1,223), higher forced-expiratory volume in one second (FEV1) and forced vital capacity (FVC) were associated with larger brain and lower WMH volumes [e.g., 8.62 (95% CI:2.54-14.71) cm3 greater total brain volume per one-liter higher FEV1]. No association was seen with microbleeds in the overall sample, but higher FVC was associated with lower odds of microbleeds in never-smokers and higher odds in ever-smokers. In the cross-temporal analysis (i.e., associations with midlife lung function, n = 1,787), higher FVC levels were significantly associated with lower later-life brain volumes. Conclusions: Our results support modest associations of better lung function with less neurodegenerative and cerebrovascular pathology, although findings for microbleeds were unexpected in ever-smokers.

2.
Res Sq ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38699335

ABSTRACT

Background: Epigenome-wide association studies have revealed multiple DNA methylation sites (CpGs) associated with alcohol consumption, an important lifestyle risk factor for cardiovascular diseases. Results: We generated an alcohol consumption epigenetic risk score (ERS) based on previously reported 144 alcohol-associated CpGs and examined the association of the ERS with systolic blood pressure (SBP), diastolic blood pressure (DBP), and hypertension (HTN) in 3,898 Framingham Heart Study (FHS) participants. We found an association of alcohol intake with the ERS in the meta-analysis with 0.09 units higher ERS per drink consumed per day (p < 0.0001). Cross-sectional analyses in FHS revealed that a one-unit increment of the ERS was associated with 1.93 mm Hg higher SBP (p = 4.64E-07), 0.68 mm Hg higher DBP (p = 0.006), and an odds ratio of 1.78 for HTN (p < 2E-16). Meta-analysis of the cross-sectional association of the ERS with BP traits in eight independent external cohorts (n = 11,544) showed similar relationships with blood pressure levels, i.e., a one-unit increase in ERS was associated with 0.74 (p = 0.002) and 0.50 (p = 0.0006) mm Hg higher SBP and DBP, but could not confirm the association with hypertension. Longitudinal analyses in FHS (n = 3,260) and five independent external cohorts (n = 4,021) showed that the baseline ERS was not associated with a change in blood pressure over time or with incident HTN. Conclusions: Our findings provide proof-of-concept that utilizing an ERS is a useful approach to capture the recent health consequences of lifestyle behaviors such as alcohol consumption.

3.
Res Sq ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38659817

ABSTRACT

Purpose: Over 550 loci have been associated with human pulmonary function in genome-wide association studies (GWAS); however, the causal role of most remains uncertain. Single nucleotide polymorphisms in a disintegrin and metalloprotease domain 19 (ADAM19) are consistently related to pulmonary function in GWAS. Thus, we used a mouse model to investigate the causal link between Adam19 and pulmonary function. Methods: We created an Adam19 knockout (KO) mouse model and validated the gene targeting using RNA-Seq and RT-qPCR. Contrary to prior publications, the KO was not neonatal lethal. Thus, we phenotyped the Adam19 KO. Results: KO mice had lower body weight and shorter tibial length than wild type (WT). Dual-energy X-ray Absorptiometry indicated lower soft weight, fat weight, and bone mineral content in KO mice. In lung function analyses using flexiVent, compared to WT, Adam19 KO had decreased baseline respiratory system elastance, minute work of breathing, tissue damping, tissue elastance, and forced expiratory flow at 50% forced vital capacity but higher FEV0.1 and FVC. Adam19 KO had attenuated tissue damping and tissue elastance in response to methacholine following LPS exposure. Adam19 KO also exhibited attenuated neutrophil extravasation into the airway after LPS administration compared to WT. RNA-Seq analysis of KO and WT lungs identified several differentially expressed genes (Cd300lg, Kpna2, and Pttg1) implicated in lung biology and pathogenesis. Gene set enrichment analysis identified negative enrichment for TNF pathways. Conclusion: Our murine findings support a causal role of ADAM19, implicated in human GWAS, in regulating pulmonary function.

4.
J Clin Invest ; 134(9)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38483511

ABSTRACT

In lung, thromboxane A2 (TXA2) activates the TP receptor to induce proinflammatory and bronchoconstrictor effects. Thus, TP receptor antagonists and TXA2 synthase inhibitors have been tested as potential asthma therapeutics in humans. Th9 cells play key roles in asthma and regulate the lung immune response to allergens. Herein, we found that TXA2 reduces Th9 cell differentiation during allergic lung inflammation. Th9 cells were decreased approximately 2-fold and airway hyperresponsiveness was attenuated in lungs of allergic mice treated with TXA2. Naive CD4+ T cell differentiation to Th9 cells and IL-9 production were inhibited dose-dependently by TXA2 in vitro. TP receptor-deficient mice had an approximately 2-fold increase in numbers of Th9 cells in lungs in vivo after OVA exposure compared with wild-type mice. Naive CD4+ T cells from TP-deficient mice exhibited increased Th9 cell differentiation and IL-9 production in vitro compared with CD4+ T cells from wild-type mice. TXA2 also suppressed Th2 and enhanced Treg differentiation both in vitro and in vivo. Thus, in contrast to its acute, proinflammatory effects, TXA2 also has longer-lasting immunosuppressive effects that attenuate the Th9 differentiation that drives asthma progression. These findings may explain the paradoxical failure of anti-thromboxane therapies in the treatment of asthma.


Subject(s)
Asthma , Cell Differentiation , T-Lymphocytes, Regulatory , Th2 Cells , Thromboxane A2 , Animals , Mice , Th2 Cells/immunology , Th2 Cells/pathology , Thromboxane A2/metabolism , Thromboxane A2/immunology , T-Lymphocytes, Regulatory/immunology , Asthma/immunology , Asthma/pathology , Asthma/drug therapy , Asthma/genetics , Mice, Knockout , Interleukin-9/immunology , Interleukin-9/genetics , Interleukin-9/metabolism , Pneumonia/immunology , Pneumonia/pathology , Mice, Inbred C57BL , Mice, Inbred BALB C , Lung/immunology , Lung/pathology , Ovalbumin/immunology , Female , T-Lymphocytes, Helper-Inducer/immunology
5.
medRxiv ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38464320

ABSTRACT

Background: Epigenome-wide association studies have revealed multiple DNA methylation sites (CpGs) associated with alcohol consumption, an important lifestyle risk factor for cardiovascular diseases. Results: We generated an alcohol consumption epigenetic risk score (ERS) based on previously reported 144 alcohol-associated CpGs and examined the association of the ERS with systolic blood pressure (SBP), diastolic blood pressure (DBP), and hypertension (HTN) in 3,898 Framingham Heart Study (FHS) participants. We found an association of alcohol intake with the ERS in the meta-analysis with 0.09 units higher ERS per drink consumed per day (p < 0.0001). Cross-sectional analyses in FHS revealed that a one-unit increment of the ERS was associated with 1.93 mm Hg higher SBP (p = 4.64E-07), 0.68 mm Hg higher DBP (p = 0.006), and an odds ratio of 1.78 for HTN (p < 2E-16). Meta-analysis of the cross-sectional association of the ERS with BP traits in eight independent external cohorts (n = 11,544) showed similar relationships with blood pressure levels, i.e., a one-unit increase in ERS was associated with 0.74 (p = 0.002) and 0.50 (p = 0.0006) mm Hg higher SBP and DBP, but could not confirm the association with hypertension. Longitudinal analyses in FHS (n = 3,260) and five independent external cohorts (n = 4,021) showed that the baseline ERS was not associated with a change in blood pressure over time or with incident HTN. Conclusions: Our findings provide proof-of-concept that utilizing an ERS is a useful approach to capture the recent health consequences of lifestyle behaviors such as alcohol consumption.

6.
EBioMedicine ; 100: 104956, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38199042

ABSTRACT

BACKGROUND: Smoking impacts DNA methylation, but data are lacking on smoking-related differential methylation by sex or dietary intake, recent smoking cessation (<1 year), persistence of differential methylation from in utero smoking exposure, and effects of environmental tobacco smoke (ETS). METHODS: We meta-analysed data from up to 15,014 adults across 5 cohorts with DNA methylation measured in blood using Illumina's EPIC array for current smoking (2560 exposed), quit < 1 year (500 exposed), in utero (286 exposed), and ETS exposure (676 exposed). We also evaluated the interaction of current smoking with sex or diet (fibre, folate, and vitamin C). FINDINGS: Using false discovery rate (FDR < 0.05), 65,857 CpGs were differentially methylated in relation to current smoking, 4025 with recent quitting, 594 with in utero exposure, and 6 with ETS. Most current smoking CpGs attenuated within a year of quitting. CpGs related to in utero exposure in adults were enriched for those previously observed in newborns. Differential methylation by current smoking at 4-71 CpGs may be modified by sex or dietary intake. Nearly half (35-50%) of differentially methylated CpGs on the 450 K array were associated with blood gene expression. Current smoking and in utero smoking CpGs implicated 3049 and 1067 druggable targets, including chemotherapy drugs. INTERPRETATION: Many smoking-related methylation sites were identified with Illumina's EPIC array. Most signals revert to levels observed in never smokers within a year of cessation. Many in utero smoking CpGs persist into adulthood. Smoking-related druggable targets may provide insights into cancer treatment response and shared mechanisms across smoking-related diseases. FUNDING: Intramural Research Program of the National Institutes of Health, Norwegian Ministry of Health and Care Services and the Ministry of Education and Research, Chief Scientist Office of the Scottish Government Health Directorates and the Scottish Funding Council, Medical Research Council UK and the Wellcome Trust.


Subject(s)
Smoking Cessation , Tobacco Smoke Pollution , Adult , Humans , Infant, Newborn , DNA Methylation , Epigenesis, Genetic , Smoking/adverse effects , Smoking/genetics , Tobacco Smoking , CpG Islands
7.
Allergy ; 79(3): 643-655, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38263798

ABSTRACT

BACKGROUND: Adult asthma is complex and incompletely understood. Plasma proteomics is an evolving technique that can both generate biomarkers and provide insights into disease mechanisms. We aimed to identify plasma proteomic signatures of adult asthma. METHODS: Protein abundance in plasma was measured in individuals from the Agricultural Lung Health Study (ALHS) (761 asthma, 1095 non-case) and the Atherosclerosis Risk in Communities study (470 asthma, 10,669 non-case) using the SOMAScan 5K array. Associations with asthma were estimated using covariate adjusted logistic regression and meta-analyzed using inverse-variance weighting. Additionally, in ALHS, we examined phenotypes based on both asthma and seroatopy (asthma with atopy (n = 207), asthma without atopy (n = 554), atopy without asthma (n = 147), compared to neither (n = 948)). RESULTS: Meta-analysis of 4860 proteins identified 115 significantly (FDR<0.05) associated with asthma. Multiple signaling pathways related to airway inflammation and pulmonary injury were enriched (FDR<0.05) among these proteins. A proteomic score generated using machine learning provided predictive value for asthma (AUC = 0.77, 95% CI = 0.75-0.79 in training set; AUC = 0.72, 95% CI = 0.69-0.75 in validation set). Twenty proteins are targeted by approved or investigational drugs for asthma or other conditions, suggesting potential drug repurposing. The combined asthma-atopy phenotype showed significant associations with 20 proteins, including five not identified in the overall asthma analysis. CONCLUSION: This first large-scale proteomics study identified over 100 plasma proteins associated with current asthma in adults. In addition to validating previous associations, we identified many novel proteins that could inform development of diagnostic biomarkers and therapeutic targets in asthma management.


Subject(s)
Asthma , Hypersensitivity, Immediate , Adult , Humans , Proteomics/methods , Asthma/metabolism , Biomarkers , Phenotype , Blood Proteins/genetics
8.
Environ Res ; 243: 117819, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38052359

ABSTRACT

BACKGROUND: Farm work entails a heterogeneous mixture of exposures that vary considerably across farms and farmers. Farm work is associated with various health outcomes, both adverse and beneficial. One mechanism by which farming exposures can impact health is through the microbiome, including the indoor home environment microbiome. It is unknown how individual occupational exposures shape the microbial composition in workers' homes. OBJECTIVES: We investigated associations between farm work activities, including specific tasks and pesticide use, and the indoor microbiome in the homes of 468 male farmers. METHODS: Participants were licensed pesticide applicators, mostly farmers, enrolled in the Agricultural Lung Health Study from 2008 to 2011. Vacuumed dust from participants' bedrooms underwent whole-genome shotgun sequencing for indoor microbiome assessment. Using questionnaire data, we evaluated 6 farm work tasks (processing of either hay, silage, animal feed, fertilizer, or soy/grains, and cleaning grain bins) and 19 pesticide ingredients currently used in the past year, plus 7 banned persistent pesticide ingredients ever used. RESULTS: All 6 work tasks were associated with increased microbial diversity levels, with a positive dose-response for the total number of tasks performed (P = 0.001). All tasks were associated with altered microbial compositions (weighted UniFrac P = 0.001) and with higher abundance of specific microbes, including soil-based commensal microbes such as Haloterrigena. Among the 19 pesticides, current use of glyphosate and past use of lindane were associated with increased microbial diversity (P = 0.02-0.04). Ten currently used pesticides and all 7 banned pesticides were associated with altered microbial composition (P = 0.001-0.04). Six pesticides were associated with differential abundance of certain microbes. DISCUSSION: Different farm activities and exposures can uniquely impact the dust microbiome inside homes. Our work suggests that changes to the home microbiome could serve as one pathway for how occupational exposures impact the health of workers and their cohabitating family members, offering possible future intervention targets.


Subject(s)
Microbiota , Occupational Exposure , Pesticides , Animals , Humans , Male , Farms , Agriculture , Pesticides/analysis , Occupational Exposure/analysis , Dust/analysis
9.
Eur Respir J ; 63(1)2024 01.
Article in English | MEDLINE | ID: mdl-38097206

ABSTRACT

BACKGROUND: Preserved ratio impaired spirometry (PRISm) is defined as a forced expiratory volume in 1 s (FEV1) <80% predicted and FEV1/forced vital capacity ≥0.70. PRISm is associated with respiratory symptoms and comorbidities. Our objective was to discover novel genetic signals for PRISm and see if they provide insight into the pathogenesis of PRISm and associated comorbidities. METHODS: We undertook a genome-wide association study (GWAS) of PRISm in UK Biobank participants (Stage 1), and selected single nucleotide polymorphisms (SNPs) reaching genome-wide significance for replication in 13 cohorts (Stage 2). A combined meta-analysis of Stage 1 and Stage 2 was done to determine top SNPs. We used cross-trait linkage disequilibrium score regression to estimate genome-wide genetic correlation between PRISm and pulmonary and extrapulmonary traits. Phenome-wide association studies of top SNPs were performed. RESULTS: 22 signals reached significance in the joint meta-analysis, including four signals novel for lung function. A strong genome-wide genetic correlation (rg) between PRISm and spirometric COPD (rg=0.62, p<0.001) was observed, and genetic correlation with type 2 diabetes (rg=0.12, p=0.007). Phenome-wide association studies showed that 18 of 22 signals were associated with diabetic traits and seven with blood pressure traits. CONCLUSION: This is the first GWAS to successfully identify SNPs associated with PRISm. Four of the signals, rs7652391 (nearest gene MECOM), rs9431040 (HLX), rs62018863 (TMEM114) and rs185937162 (HLA-B), have not been described in association with lung function before, demonstrating the utility of using different lung function phenotypes in GWAS. Genetic factors associated with PRISm are strongly correlated with risk of both other lung diseases and extrapulmonary comorbidity.


Subject(s)
Diabetes Mellitus, Type 2 , Pulmonary Disease, Chronic Obstructive , Humans , Genome-Wide Association Study , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/genetics , Diabetes Mellitus, Type 2/genetics , Lung , Forced Expiratory Volume/genetics , Spirometry , Vital Capacity
10.
Environ Health Perspect ; 131(12): 126001, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38048101

ABSTRACT

BACKGROUND: The prenatal environment influences lifetime health; epigenetic mechanisms likely predominate. In 2016, the first international consortium paper on cigarette smoking during pregnancy and offspring DNA methylation identified extensive, reproducible exposure signals. This finding raised expectations for epigenome-wide association studies (EWAS) of other exposures. OBJECTIVE: We review the current state-of-the-science for DNA methylation associations across prenatal exposures in humans and provide future recommendations. METHODS: We reviewed 134 prenatal environmental EWAS of DNA methylation in newborns, focusing on 51 epidemiological studies with meta-analysis or replication testing. Exposures spanned cigarette smoking, alcohol consumption, air pollution, dietary factors, psychosocial stress, metals, other chemicals, and other exogenous factors. Of the reproducible DNA methylation signatures, we examined implementation as exposure biomarkers. RESULTS: Only 19 (14%) of these prenatal EWAS were conducted in cohorts of 1,000 or more individuals, reflecting the still early stage of the field. To date, the largest perinatal EWAS sample size was 6,685 participants. For comparison, the most recent genome-wide association study for birth weight included more than 300,000 individuals. Replication, at some level, was successful with exposures to cigarette smoking, folate, dietary glycemic index, particulate matter with aerodynamic diameter <10µm and <2.5µm, nitrogen dioxide, mercury, cadmium, arsenic, electronic waste, PFAS, and DDT. Reproducible effects of a more limited set of prenatal exposures (smoking, folate) enabled robust methylation biomarker creation. DISCUSSION: Current evidence demonstrates the scientific premise for reproducible DNA methylation exposure signatures. Better powered EWAS could identify signatures across many exposures and enable comprehensive biomarker development. Whether methylation biomarkers of exposures themselves cause health effects remains unclear. We expect that larger EWAS with enhanced coverage of epigenome and exposome, along with improved single-cell technologies and evolving methods for integrative multi-omics analyses and causal inference, will expand mechanistic understanding of causal links between environmental exposures, the epigenome, and health outcomes throughout the life course. https://doi.org/10.1289/EHP12956.


Subject(s)
Epigenome , Genome-Wide Association Study , Female , Humans , Infant, Newborn , Pregnancy , Biomarkers , Environmental Exposure , Folic Acid , Meta-Analysis as Topic
11.
J Clin Psychiatry ; 84(6)2023 11 01.
Article in English | MEDLINE | ID: mdl-37916925

ABSTRACT

Objective: Medication adherence is an important component of treatment and has the potential to influence illness trajectory in individuals with first-episode psychosis (FEP). We sought to examine time to medication non-adherence as well as factors related to non-adherence in a real-world FEP clinic.Methods: We conducted a survival analysis to examine time to medication non-adherence using data extracted from medical records of patients admitted to a FEP clinic at an academic psychiatric hospital between May 2012 and October 2017 (n = 219). The risk pool included patients who were adherent during the first 6 months in the clinic (n = 122). Data were extracted for the entire length of participants' time in the clinic, up to 66 months. Pre-selected clinical and demographic variables of interest were extracted and entered into a Cox proportional hazards model.Results: Of the risk pool of 122 patients, 37 (30%) had documented non-adherence events. The risk of non-adherence was 0.35 (95% CI, 0.25-0.46) and 0.49 (95% CI, 0.37-0.63) at the 24- and 36-month time points, respectively, and plateaued after 36 months. Non-White race (adjusted HR = 3.69; P = .003; 95% CI, 1.57-8.70), lack of insight in the prior 6 months (adjusted HR = 3.24; P = .005; 95% CI, 1.43-7.35), and substance use in the prior 6 months (adjusted HR = 2.58; P = .022; 95% CI, 1.15-5.81) were significant predictors of non-adherence.Conclusions: Clinicians should consider efforts to strengthen therapeutic alliance with non-White patients, improve insight, and help patients reduce or cease substance use when supporting medication adherence in the FEP population.


Subject(s)
Psychotic Disorders , Substance-Related Disorders , Humans , Psychotic Disorders/diagnosis , Psychotic Disorders/drug therapy , Hospitalization , Hospitals, Psychiatric , Medication Adherence
12.
Epigenomics ; 15(22): 1179-1193, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38018434

ABSTRACT

Background: Prenatal caffeine exposure may influence offspring health via DNA methylation, but no large studies have tested this. Materials & methods: Epigenome-wide association studies and differentially methylated regions in cord blood (450k or EPIC Illumina arrays) were meta-analyzed across six European cohorts (n = 3725). Differential methylation related to self-reported caffeine intake (mg/day) from coffee, tea and cola was compared with assess whether caffeine is driving effects. Results: One CpG site (cg19370043, PRRX1) was associated with caffeine and another (cg14591243, STAG1) with cola intake. A total of 12-22 differentially methylated regions were detected with limited overlap across caffeinated beverages. Conclusion: We found little evidence to support an intrauterine effect of caffeine on offspring DNA methylation. Statistical power limitations may have impacted our findings.


Current guidelines recommend pregnant women to limit caffeine intake to less than 200 mg daily, even though there is no clear proof of its effects on human development. A biological explanation for how exposure to caffeine during pregnancy influences development would help clarify if recommended limits are justified. An epigenetic mechanism, called DNA methylation (DNAm), has been suggested as a potential biological explanation for how caffeine intake during pregnancy influences health development. DNAm can switch genes 'on' or 'off' in response to environmental influences and therefore act as a bridge between genes and the environment. Studies have found that smoking during pregnancy is connected to over 6000 changes in DNAm at birth, with lasting effects into adulthood. To explore the link between caffeine intake during pregnancy and DNAm at birth, we analyzed data from 3725 mother­child pairs living in different European countries. We looked at effects from coffee, tea and cola intake during pregnancy on children's DNAm at birth. We found one change in DNAm to be connected to total caffeine and another to cola consumption during pregnancy. These few connections do not provide convincing evidence that caffeine intake during pregnancy impacts children's DNAm at birth. However, because mothers in our study consumed little caffeine, it is possible that results would be different in studies with participants consuming high amounts of caffeine during pregnancy. Potentially, our study did not include enough people to find very small changes in DNAm that are connected to caffeine consumption during pregnancy.


Subject(s)
Caffeine , DNA Methylation , Pregnancy , Female , Humans , Caffeine/adverse effects , Epigenome , Fetal Blood , Homeodomain Proteins
13.
medRxiv ; 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37662364

ABSTRACT

Background: Farm work entails a heterogeneous mixture of exposures that vary considerably across farms and farmers. Farm work is associated with various health outcomes, both adverse and beneficial. One mechanism by which farming exposures can impact health is through the microbiome, including the indoor built environment microbiome. It is unknown how individual occupational exposures shape the microbial composition in workers' homes. Objectives: We investigated associations between farm work activities, including specific tasks and pesticide use, and the indoor microbiome in the homes of 468 male farmers. Methods: Participants were licensed pesticide applicators, mostly farmers, enrolled in the Agricultural Lung Health Study from 2008-2011. Vacuumed dust from participants' bedrooms underwent whole-genome shotgun sequencing for indoor microbiome assessment. Using questionnaire data, we evaluated 6 farm work tasks (processing of either hay, silage, animal feed, fertilizer, or soy/grains, and cleaning grain bins) and 19 pesticide ingredients currently used in the past year, plus 7 persistent banned pesticide ingredients ever used. Results: All 6 work tasks were associated with increased within-sample microbial diversity, with a positive dose-response for the sum of tasks (p=0.001). All tasks were associated with altered overall microbial compositions (weighted UniFrac p=0.001) and with higher abundance of specific microbes, including soil-based microbes such as Haloterrigena. Among the 19 pesticides, only current use of glyphosate and past use of lindane were associated with increased within-sample diversity (p=0.02-0.04). Ten currently used pesticides and all 7 banned pesticides were associated with altered microbial composition (p=0.001-0.04). Six pesticides were associated with differential abundance of certain microbes. Discussion: Specific farm activities and exposures can impact the dust microbiome inside homes. Our work suggests that occupational farm exposures could impact the health of workers and their families through modifying the indoor environment, specifically the microbial composition of house dust, offering possible future intervention targets.

14.
Front Microbiol ; 14: 1202194, 2023.
Article in English | MEDLINE | ID: mdl-37415812

ABSTRACT

Indoor home dust microbial communities, important contributors to human health, are shaped by environmental factors, including farm-related exposures. Advanced metagenomic whole genome shotgun sequencing (WGS) improves detection and characterization of microbiota in the indoor built-environment dust microbiome, compared to conventional 16S rRNA amplicon sequencing (16S). We hypothesized that the improved characterization of indoor dust microbial communities by WGS will enhance detection of exposure-outcome associations. The objective of this study was to identify novel associations of environmental exposures with the dust microbiome from the homes of 781 farmers and farm spouses enrolled in the Agricultural Lung Health Study. We examined various farm-related exposures, including living on a farm, crop versus animal production, and type of animal production, as well as non-farm exposures, including home cleanliness and indoor pets. We assessed the association of the exposures on within-sample alpha diversity and between-sample beta diversity, and the differential abundance of specific microbes by exposure. Results were compared to previous findings using 16S. We found most farm exposures were significantly positively associated with both alpha and beta diversity. Many microbes exhibited differential abundance related to farm exposures, mainly in the phyla Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. The identification of novel differential taxa associated with farming at the genera level, including Rhodococcus, Bifidobacterium, Corynebacterium, and Pseudomonas, was a benefit of WGS compared to 16S. Our findings indicate that characterization of dust microbiota, an important component of the indoor environment relevant to human health, is heavily influenced by sequencing techniques. WGS is a powerful tool to survey the microbial community that provides novel insights on the impact of environmental exposures on indoor dust microbiota. These findings can inform the design of future studies in environmental health.

15.
Am J Epidemiol ; 192(10): 1637-1646, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37392093

ABSTRACT

We examined the associations between lung function and incident dementia and cognitive decline in 12,688 participants in the ARIC Study who provided lung function measurements in 1990-1992. Cognitive tests were administered up to 7 times, and dementia was ascertained through 2019. We used shared parameter models to jointly fit proportional hazard models and linear mixed-effect models to estimate lung-function-associated dementia rate and cognitive change, respectively. Higher forced expiratory volume in 1 second (FEV1) and forced vital capacity (FVC) were associated with reduced dementia (n = 2,452 persons developed dementia); hazard ratios per 1-L increase in FEV1 and FVC were 0.79 (95% confidence interval (CI): 0.71, 0.89) and 0.81 (95% CI: 0.74, 0.89), respectively. Each 1-L increase in FEV1 and FVC was associated with a 0.08-standard deviation (SD) (95% CI: 0.05, 0.12) and a 0.05-SD (95% CI: 0.02, 0.07) attenuation of 30-year cognitive decline, respectively. A 1% increase in FEV1/FVC ratio was associated with 0.008-SD (95% CI: 0.004, 0.012) less cognitive decline. We observed statistical interaction between FEV1 and FVC, suggesting that cognitive declines depended on values of specific FEV1 and FVC (as compared with FEV1, FVC, or FEV1/FVC ratio models that suggested linear incremental associations). Our findings may have important implications for reducing the burden of cognitive decline that is attributable to environmental exposures and associated lung function impairment.


Subject(s)
Atherosclerosis , Cognitive Dysfunction , Dementia , Humans , Lung , Forced Expiratory Volume , Atherosclerosis/epidemiology , Cognitive Dysfunction/epidemiology , Dementia/epidemiology , Dementia/etiology
16.
medRxiv ; 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37090637

ABSTRACT

Indoor home dust microbial communities, important contributors to human health outcomes, are shaped by environmental factors, including farm-related exposures. Detection and characterization of microbiota are influenced by sequencing methodology; however, it is unknown if advanced metagenomic whole genome shotgun sequencing (WGS) can detect novel associations between environmental exposures and the indoor built-environment dust microbiome, compared to conventional 16S rRNA amplicon sequencing (16S). This study aimed to better depict indoor dust microbial communities using WGS to investigate novel associations with environmental risk factors from the homes of 781 farmers and farm spouses enrolled in the Agricultural Lung Health Study. We examined various farm-related exposures, including living on a farm, crop versus animal production, and type of animal production, as well as non-farm exposures, including home cleanliness and indoor pets. We assessed the association of the exposures on within-sample alpha diversity and between-sample beta diversity, and the differential abundance of specific microbes by exposure. Results were compared to previous findings using 16S. We found most farm exposures were significantly positively associated with both alpha and beta diversity. Many microbes exhibited differential abundance related to farm exposures, mainly in the phyla Actinobacteria, Bacteroidetes, Firmicutes , and Proteobacteria . The identification of novel differential taxa associated with farming at the genera level, including Rhodococcus, Bifidobacterium, Corynebacterium , and Pseudomonas , was a benefit of WGS compared to 16S. Our findings indicate that characterization of dust microbiota, an important component of the indoor environment relevant to human health, is heavily influenced by sequencing techniques. WGS is a powerful tool to survey the microbial community that provides novel insights on the impact of environmental exposures on indoor dust microbiota, and should be an important consideration in designing future studies in environmental health.

17.
Epigenetics ; 18(1): 2202835, 2023 12.
Article in English | MEDLINE | ID: mdl-37093107

ABSTRACT

Circulating vitamin B12 concentrations during pregnancy are associated with offspring health. Foetal DNA methylation changes could underlie these associations. Within the Pregnancy And Childhood Epigenetics Consortium, we meta-analysed epigenome-wide associations of circulating vitamin B12 concentrations in mothers during pregnancy (n = 2,420) or cord blood (n = 1,029), with cord blood DNA methylation. Maternal and newborn vitamin B12 concentrations were associated with DNA methylation at 109 and 7 CpGs, respectively (False Discovery Rate P-value <0.05). Persistent associations with DNA methylation in the peripheral blood of up to 482 children aged 4-10 y were observed for 40.7% of CpGs associated with maternal vitamin B12 and 57.1% of CpGs associated with newborn vitamin B12. Of the CpGs identified in the maternal meta-analyses, 4.6% were associated with either birth weight or gestational age in a previous work. For the newborn meta-analysis, this was the case for 14.3% of the identified CpGs. Also, of the CpGs identified in the newborn meta-analysis, 14.3% and 28.6%, respectively, were associated with childhood cognitive skills and nonverbal IQ. Of the 109 CpGs associated with maternal vitamin B12, 18.3% were associated with nearby gene expression. In this study, we showed that maternal and newborn vitamin B12 concentrations are associated with DNA methylation at multiple CpGs in offspring blood (PFDR<0.05). Whether this differential DNA methylation underlies associations of vitamin B12 concentrations with child health outcomes, such as birth weight, gestational age, and childhood cognition, should be further examined in future studies.


Subject(s)
DNA Methylation , Epigenome , Infant, Newborn , Pregnancy , Child , Female , Humans , Birth Weight/genetics , Vitamin B 12/metabolism , Epigenesis, Genetic , Fetal Blood/metabolism
18.
Epigenomics ; 15(1): 39-52, 2023 01.
Article in English | MEDLINE | ID: mdl-36974632

ABSTRACT

Aim: To perform an epigenome-wide association study (EWAS) of serum folate in maternal blood. Methods: Cross-ancestry (Europeans = 302, South Asians = 161) and ancestry-specific EWAS in the EPIPREG cohort were performed, followed by methyl quantitative trait loci analysis and association with cardiometabolic phenotypes. Replication was attempted using maternal folate intake and blood methylation data from the MoBa study and verified if the findings were significant in a previous EWAS of maternal serum folate in cord blood. Results & conclusion: cg19888088 (cross-ancestry) in EBF3, cg01952260 (Europeans) and cg07077240 (South Asians) in HERC3 were associated with serum folate. cg19888088 and cg01952260 were associated with diastolic blood pressure. cg07077240 was associated with variants in CASC15. The findings were not replicated and were not significant in cord blood.


Subject(s)
Epigenesis, Genetic , Epigenome , DNA Methylation , Fetal Blood/metabolism , Leukocytes , Folic Acid/metabolism , Genome-Wide Association Study/methods
19.
Mol Psychiatry ; 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36899042

ABSTRACT

Prenatal maternal stressful life events are associated with adverse neurodevelopmental outcomes in offspring. Biological mechanisms underlying these associations are largely unknown, but DNA methylation likely plays a role. This meta-analysis included twelve non-overlapping cohorts from ten independent longitudinal studies (N = 5,496) within the international Pregnancy and Childhood Epigenetics consortium to examine maternal stressful life events during pregnancy and DNA methylation in cord blood. Children whose mothers reported higher levels of cumulative maternal stressful life events during pregnancy exhibited differential methylation of cg26579032 in ALKBH3. Stressor-specific domains of conflict with family/friends, abuse (physical, sexual, and emotional), and death of a close friend/relative were also associated with differential methylation of CpGs in APTX, MyD88, and both UHRF1 and SDCCAG8, respectively; these genes are implicated in neurodegeneration, immune and cellular functions, regulation of global methylation levels, metabolism, and schizophrenia risk. Thus, differences in DNA methylation at these loci may provide novel insights into potential mechanisms of neurodevelopment in offspring.

20.
Hum Mol Genet ; 32(9): 1565-1574, 2023 04 20.
Article in English | MEDLINE | ID: mdl-36617164

ABSTRACT

Shorter gestational age (GA) is a risk factor of developmental delay. GA is usually estimated clinically from last menstrual period and ultrasound. DNA methylation (DNAm) estimates GA using sets of cytosine-guanine-sites coupled with a clock algorithm. Therefore, DNAm-estimated GA may better reflect biological maturation. A DNAm GA greater than clinical GA, known as gestational age acceleration (GAA), may indicate epigenetic maturity and holds potential as an early biomarker for developmental delay risk. We used data from the Upstate KIDS Study to examine associations of DNAm GA and developmental delay within the first 3 years based on the Ages & Stages Questionnaire® (n = 1010). We estimated DNAm GA using two clocks specific to the Illumina Methylation EPIC 850K, the Haftorn clock and one developed from the Effects of Aspirin in Gestation and Reproduction study, in which women were followed to detect pregnancy at the earliest time possible. Among singletons, each week increase in DNAm GA was protective for overall delay (odds ratio:0.74; 95% confidence interval:0.61-0.90) and delay in all domains except for problem-solving skills. Among twins, we observed similar point estimates but lower precision. Results were similar for clinical GA. GAA was largely not associated with developmental delays. In summary, either DNAm GA or clinical GA at birth, but not epigenetic maturity (i.e. GAA), was associated with decreased odds of developmental delay in early childhood. Our study does not support using DNAm GA or GAA as separate risk factors for future risk of developmental delay within the first 3 years of age.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Infant, Newborn , Pregnancy , Humans , Child, Preschool , Female , Gestational Age , DNA Methylation/genetics , Epigenomics , Twins , Aging
SELECTION OF CITATIONS
SEARCH DETAIL
...