Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Opt Express ; 31(25): 41979-41986, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38087582

ABSTRACT

We present a mode-locked semiconductor laser oscillator that emits few picosecond pulses (5-8ps at a repetition rate of 379MHz and wavelength of 1064nm) with record peak power (112W) and pulse energy (0.5nJ) directly out of the oscillator (with no amplifier). To achieve this high power performance we employ a high-current broad-area, spatially multi-mode diode amplifier (0.3×5mm), placed in an external cavity that enforces oscillation in a single spatial mode. Consequently, the brightness of the beam is near-ideal (M2 = 1.3). Mode locking is achieved by dividing the large diode chip (edge emitter) into two sections with independent electrical control: one large section for gain and another small section for a saturable absorber. Precise tuning of the reverse voltage on the absorber section allows to tune the saturation level and recovery time of the absorber, providing a convenient knob to optimize the mode-locking performance for various cavity conditions.

2.
Opt Lett ; 48(19): 5037-5040, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37773379

ABSTRACT

The glass transition temperature is a key parameter of polymer coating layers that protect optical fibers, and it affects the proper function of the fibers in their service environment. Established protocols for glass transition temperature measurements are destructive, require samples of specific geometries, and may only be carried out offline. In this work, we report the nondestructive measurement of the glass transition temperature of an acrylate polymer coating layer over a working standard fiber. The method is based on forward stimulated Brillouin scattering. A large decrease in the modulus of the coating layer above the glass transition temperature manifests in the narrowing of the modal linewidths in the forward Brillouin scattering spectrum. The transition temperature agrees with the standard dynamic mechanical analysis of samples made of the same polymer. The protocol can be useful for coating materials research and development, production line quality assurance, and preventive maintenance.

3.
Opt Express ; 30(22): 39321-39328, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36298886

ABSTRACT

Forward Brillouin scattering interactions support the sensing and analysis of media outside the cladding boundaries of standard fibers, where light cannot reach. Quantitative point-sensing based on this principle has yet to be reported. In this work, we report a forward Brillouin scattering point-sensor in a commercially available, off-the-shelf multi-core fiber. Pump light at the inner, on-axis core of the fiber is used to stimulate a guided acoustic mode of the entire fiber cross-section. The acoustic wave, in turn, induces photoelastic perturbations to the reflectivity of a Bragg grating inscribed in an outer, off-axis core of the same fiber. The measurements successfully analyze refractive index perturbations on the tenth decimal point and distinguish between ethanol and water outside the centimeter-long grating. The measured forward Brillouin scattering linewidths agree with predictions. The acquired spectra are unaffected by forward Brillouin scattering outside the grating region. The results add point-analysis to the portfolio of forward Brillouin scattering optical fiber sensors.

4.
Nat Commun ; 13(1): 3554, 2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35729112

ABSTRACT

Fibre lasers based on backward stimulated Brillouin scattering provide narrow linewidths and serve in signal processing and sensing applications. Stimulated Brillouin scattering in fibres takes place in the forward direction as well, with amplification bandwidths that are narrower by two orders of magnitude. However, forward Brillouin lasers have yet to be realized in any fibre platform. In this work, we report a first forward Brillouin fibre laser, using a bare off-the-shelf, panda-type polarisation maintaining fibre. Pump light in one principal axis provides Brillouin amplification for a co-propagating lasing signal of the orthogonal polarisation. Feedback is provided by Bragg gratings at both ends of the fibre cavity. Single-mode, few-modes and multi-mode regimes of operation are observed. The lasing threshold exhibits a unique environmental sensitivity: it is elevated when the fibre is partially immersed in water due to the broadening of forward Brillouin scattering spectra. The results establish a new type of fibre laser, with potential for ultra-high coherence and precision sensing of media outside the cladding.

5.
Light Sci Appl ; 10(1): 119, 2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34092787

ABSTRACT

Opto-mechanical interactions in guided wave media are drawing great interest in fundamental research and applications. Forward stimulated Brillouin scattering, in particular, is widely investigated in optical fibres and photonic integrated circuits. In this work, we report a comprehensive study of forward stimulated Brillouin scattering over standard, panda-type polarization maintaining fibres. We distinguish between intra-polarization scattering, in which two pump tones are co-polarized along one principal axis, and inter-polarization processes driven by orthogonally polarized pump waves. Both processes are quantified in analysis, calculations and experiment. Inter-modal scattering, in particular, introduces cross-polarization switching of probe waves that is non-reciprocal. Switching takes place in multiple wavelength windows. The results provide a first demonstration of opto-mechanical non-reciprocity of forward scatter in standard fibre. The inter-polarization process is applicable to distributed sensors of media outside the cladding and coating boundaries, where light cannot reach. The process may be scaled towards forward Brillouin lasers, optical isolators and circulators and narrowband microwave-photonic filters over longer sections of off-the-shelf polarization maintaining fibres.

6.
Nat Commun ; 9(1): 2991, 2018 07 31.
Article in English | MEDLINE | ID: mdl-30065284

ABSTRACT

Optical fibres constitute an exceptional sensing platform. However, standard fibres present an inherent sensing challenge: they confine light to an inner core. Consequently, distributed fibre sensors are restricted to the measurement of conditions that prevail within the core. This work presents distributed analysis of media outside unmodified, standard fibre. Measurements are based on stimulated scattering by guided acoustic modes, which allow us to listen where we cannot look. The protocol overcomes a major difficulty: guided acoustic waves induce forward scattering, which cannot be mapped using time-of-flight. The solution relies on mapping the Rayleigh backscatter contributions of two optical tones, which are coupled by the acoustic wave. Analysis is demonstrated over 3 km of fibre with 100 m resolution. Measurements distinguish between air, ethanol and water outside the cladding, and between air and water outside polyimide-coated fibres. The results establish a new sensor configuration: optomechanical time-domain reflectometry, with several potential applications.

7.
Sci Rep ; 8(1): 9514, 2018 Jun 22.
Article in English | MEDLINE | ID: mdl-29934556

ABSTRACT

Opto-mechanical oscillators that generate coherent acoustic waves are drawing much interest, in both fundamental research and applications. Narrowband oscillations can be obtained through the introduction of feedback to the acoustic wave. Most previous realizations of this concept, sometimes referred to as "phonon lasers", relied on radiation pressure and moving boundary effects in micro- or nano-structured media. Demonstrations in bulk crystals required cryogenic temperatures. In this work, stimulated emission of highly-coherent acoustic waves is achieved in a commercially-available multi-core fiber, at room temperature. The fiber is connected within an opto-electronic cavity loop. Pump light in one core is driving acoustic waves via electrostriction, whereas an optical probe wave at a different physical core undergoes photo-elastic modulation by the stimulated acoustic waves. Coupling between pump and probe is based entirely on inter-core, opto-mechanical cross-phase modulation: no direct optical feedback is provided. Single-frequency mechanical oscillations at hundreds of MHz frequencies are obtained, with side-mode suppression that is better than 55 dB. A sharp threshold and rapid collapse of the linewidth above threshold are observed. The linewidths of the acoustic oscillations are on the order of 100 Hz, orders of magnitude narrower than those of the pump and probe light sources. The relative Allan's deviation of the frequency is between 0.1-1 ppm. The frequency may be switched among several values by propagating the pump or probe waves in different cores. The results may be used in sensing, metrology and microwave-photonic information processing applications.

8.
Sensors (Basel) ; 17(10)2017 Oct 02.
Article in English | MEDLINE | ID: mdl-28974041

ABSTRACT

Structural health monitoring is a critical requirement in many composites. Numerous monitoring strategies rely on measurements of temperature or strain (or both), however these are often restricted to point-sensing or to the coverage of small areas. Spatially-continuous data can be obtained with optical fiber sensors. In this work, we report high-resolution distributed Brillouin sensing over standard fibers that are embedded in composite structures. A phase-coded, Brillouin optical correlation domain analysis (B-OCDA) protocol was employed, with spatial resolution of 2 cm and sensitivity of 1 °K or 20 micro-strain. A portable measurement setup was designed and assembled on the premises of a composite structures manufacturer. The setup was successfully utilized in several structural health monitoring scenarios: (a) monitoring the production and curing of a composite beam over 60 h; (b) estimating the stiffness and Young's modulus of a composite beam; and (c) distributed strain measurements across the surfaces of a model wing of an unmanned aerial vehicle. The measurements are supported by the predictions of structural analysis calculations. The results illustrate the potential added values of high-resolution, distributed Brillouin sensing in the structural health monitoring of composites.

9.
Opt Express ; 24(24): 27253-27267, 2016 Nov 28.
Article in English | MEDLINE | ID: mdl-27906298

ABSTRACT

Distributed Brillouin fiber sensors typically rely on the reconstruction of the steady-state Brillouin gain spectrum (BGS), through spectral scanning of the frequency offset between the pump and signal waves. In this work, we propose and demonstrate an alternative approach, in which the local Brillouin frequency shift (BFS) is extracted from temporal transient analysis of the step response of the amplified signal wave. Measurements are taken at only two arbitrary frequency offsets between pump and signal. No spectral scanning and no prior knowledge of a reference BGS are necessary. The principle is supported by analytic and numeric solutions of the differential equations of stimulated Brillouin scattering. The BFS of a 2 meters-long fiber under test was measured with 1 MHz accuracy and a dynamic range of 200 MHz. Transient measurements were also performed in a Brillouin optical correlation domain analysis (B-OCDA) experiment with 4 cm resolution, standard deviation of 2.4 MHz and 100 MHz dynamic range. A 4 cm-wide hot-spot was properly identified in the measurements. Multiple correlation peaks could be addressed in a single flight of a pump pulse. The results represent the first B-OCDA that is free of spectral scanning. This new measurement concept may be applicable to random-access distributed and dynamic monitoring of sound and vibration.

10.
Opt Express ; 24(23): 26867-26876, 2016 Nov 14.
Article in English | MEDLINE | ID: mdl-27857415

ABSTRACT

Brillouin optical correlation-domain analysis (B-OCDA) allows for distributed measurements of strain and temperature with sub-cm resolution. Time-multiplexing techniques have previously extended B-OCDA to the monitoring of many km of fiber and two million resolution points. Thus far, however, the number of scans of correlation peaks positions, necessary to cover the fiber under test, was restricted to the order of 100 or more. In this work we report a B-OCDA protocol that is able to address an entire fiber using only 11 pairs of position scans per choice of frequency. The measurements protocol relies on a merger between B-OCDA principles and double-pulse-pair analysis, previously incorporated in time-domain Brillouin sensors. Phase coding of the pump and signal waves with a repeating, short and high-rate code stimulates Brillouin interactions in a large number of narrow correlation peaks, with substantial temporal overlap. Unambiguous measurements are achieved by repeating each experiment twice, using a pair of pump pulses of different durations, and subtracting the two output traces. The principle is demonstrated in the analysis of a 43 m-long fiber with 2.7 cm resolution. Several local hot-spots are properly identified in the measurements. The experimental uncertainty in the measurement of the local Brillouin frequency shift is estimated as ± 1.9 MHz. The proposed method requires broader detection bandwidth and a larger number of averages than those of previous time-gated B-OCDA setups. Hence the overall number of measurements is similar to that of previous setups.

11.
Opt Express ; 22(22): 27144-58, 2014 Nov 03.
Article in English | MEDLINE | ID: mdl-25401865

ABSTRACT

A new, hybrid time-domain and correlation-domain Brillouin analysis technique is proposed and demonstrated, providing a large number of high-resolution acquisition points. The method is based on dual-layer hierarchal encoding of both amplitude and phase. The pump and signal waves are co-modulated by a relatively short, high-rate binary phase sequence. The phase modulation introduces Brillouin interactions in a large number of discrete and localized correlation peaks along the fiber under test. In addition, the pump wave is also amplitude-modulated by a slower, carefully synthesized, long on-off-keying sequence. Brillouin interactions at the correlation peaks imprint weak replicas of the pump amplitude sequence on the intensity of the output signal wave. The Brillouin amplifications at individual correlation peaks are resolved by radar-like, matched-filter processing of the output signal, following a recently-proposed incoherent compression protocol. The method provides two significant advantages with respect to previous, pulse-gated correlation-domain analysis schemes, which involved a single pump pulse. First, compression of the extended pulse sequence enhances the measurement signal-to-noise ratio, which is equivalent to that of a large number of averages over repeating single-pulse acquisitions. The acquisition times are potentially much reduced, and the number of resolution points that may be practically interrogated increases accordingly. Second, the peak power level of the pump pulses may be lowered. Hence, the onset of phase pattern distortion due to self-phase modulation is deferred, and the measurement range can be increased. Using the proposed method, the acquisition of Brillouin gain spectra over a 2.2 km-long fiber with a spatial resolution of 2 cm is demonstrated experimentally. The entire set of 110,000 resolution points is interrogated using only 499 position scans per choice of frequency offset between pump and signal. A 5 cm-long hot-spot, located towards the output end of the pump wave, is properly recognized in the measurements.

12.
Opt Express ; 22(10): 12070-8, 2014 May 19.
Article in English | MEDLINE | ID: mdl-24921326

ABSTRACT

A new technique for Brillouin scattering-based, distributed fiber-optic measurements of temperature and strain is proposed, analyzed, simulated, and demonstrated. Broadband Brillouin pump and signal waves are drawn from the filtered amplified spontaneous emission of an erbium-doped fiber amplifier, providing high spatial resolution. The reconstruction of the position-dependent Brillouin gain spectra along 5 cm of a silica single-mode fiber under test, with a spatial resolution of 4 mm, is experimentally demonstrated using a 25 GHz-wide amplified spontaneous emission source. A 4 mm-long localized hot spot is identified by the measurements. The uncertainty in the reconstruction of the local Brillouin frequency shift is ± 1.5 MHz. The single correlation peak between the pump and signal is scanned along a fiber under test using a mechanical variable delay line. The analysis of the expected spatial resolution and the measurement signal-to-noise ratio is provided. The measurement principle is supported by numerical simulations of the stimulated acoustic field as a function of position and time. Unlike most other Brillouin optical correlation domain analysis configurations, the proposed scheme is not restricted by the bandwidth of available electro-optic modulators, microwave synthesizers, or pattern generators. Resolution is scalable to less than one millimeter in highly nonlinear media.

SELECTION OF CITATIONS
SEARCH DETAIL
...