Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Language
Publication year range
1.
Drug Dev Ind Pharm ; 44(3): 377-384, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29098876

ABSTRACT

BACKGROUND: Ovarian cancer is deadliest of fifth leading cause of death in women worldwide. This is due to advanced-stage disease rate associated with the development of chemoresistance. Hence, the current study emphasizes the process of synthesis of silver nanoparticles (AgNPs) from green chemistry method. Ficus krishnae is a perennial plant, native to India, used in folklore medicine to treat various diseases. OBJECTIVE: For the development of reliable, ecofriendly, less expensive process for the synthesis of AgNPs against bacterial and ovarian cancer. METHODOLOGY: The synthesis of silver nanoparticles from stem bark of Ficus krishnae was carried out. The synthesized nanoparticles are subjected by UV-Vis spectrophotometer, scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis and FTIR analysis. The antibacterial efficacy also determined by disc diffusion method, MIC, CFU and growth curve. In vitro cytotoxicity effect of aqueous extract and AgFK nanoparticle in ovarian cancer cell line by MTT assay was performed. RESULTS: The formation of AgNPs was confirmed by UV-VIS spectroscopic absorbance shown that peak at 435 nm. XRD photograph has indicated the face-centered cubic structure of the synthesized AgNPs. SEM study demonstrated that the size from 160 to 260 nm with interparticle distance, whereas shape is spherical. The particle size were ranging from 15 to 28 nm determined by XRD pattern. The antibacterial and cytotoxicity activity of this nanoparticle has showed a potential activity when compared with standards. CONCLUSION: The present study confirms that the biosynthesized AgNPs from Ficus krishnae stem bark extract have a great affiance as antibacterial and anticancer agent.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Ficus/chemistry , Metal Nanoparticles/administration & dosage , Plant Extracts/pharmacology , Anti-Bacterial Agents/chemistry , Antineoplastic Agents/chemistry , Cell Line, Tumor , Female , Green Chemistry Technology/methods , Humans , Metal Nanoparticles/chemistry , Ovarian Neoplasms/drug therapy , Particle Size , Plant Extracts/chemistry , Plant Stems/chemistry , Silver/chemistry , Staphylococcus aureus/drug effects
2.
Endocr Metab Immune Disord Drug Targets ; 17(4): 317-323, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-28901866

ABSTRACT

OBJECTIVE: To investigate potential reproductive effects of Pterocarpus marsupium methanolic extract on testosterone propionate induced Polycystic Ovarian Syndrome (PCOS) in female albino rats. METHODOLOGY: PCOS was induced in female albino rats by daily injecting testosterone propionate for 15 days intraperitoneally. Animals are divided into five groups with six rats per group. Group 1: Control group received olive oil, Group 2: Testosterone propionate+natural recovery, Group 3: Testosterone propionate + a dose of clomiphene citrate (standard), Group 4 and 5: Testosterone propionate + low dose (200mg/kg) and high dose (400mg/kg) b.w respectively for 15 days. Various biochemical and histopathological investigations were assessed. RESULTS: Methanol extract of Pterocarpus marsupium was able to exert its protective effect successfully by restoring all the parameters to normal and diminishing the cysts found in ovaries. CONCLUSION: Pterocarpus marsupium showed potential reproductive effects on testosterone propionate induced PCOS female albino rats and could be used as an alternative therapy in the treatment of PCOS.


Subject(s)
Plant Extracts/therapeutic use , Polycystic Ovary Syndrome/chemically induced , Polycystic Ovary Syndrome/drug therapy , Pterocarpus , Reproduction/drug effects , Testosterone Propionate/toxicity , Animals , Female , Methanol/pharmacology , Methanol/therapeutic use , Plant Extracts/pharmacology , Polycystic Ovary Syndrome/pathology , Random Allocation , Rats , Reproduction/physiology , Treatment Outcome
3.
Free Radic Biol Med ; 90: 261-71, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26627937

ABSTRACT

We have previously reported that neem limonoids (neem) induce multiple cancer cell death pathways. Here we dissect the underlying mechanisms of neem-induced apoptotic cell death in cancer. We observed that neem-induced caspase activation does not require Bax/Bak channel-mediated mitochondrial outer membrane permeabilization, permeability transition pore, and mitochondrial fragmentation. Neem enhanced mitochondrial DNA and mitochondrial biomass. While oxidative phosphorylation (OXPHOS) Complex-I activity was decreased, the activities of other OXPHOS complexes including Complex-II and -IV were unaltered. Increased reactive oxygen species (ROS) levels were associated with an increase in mitochondrial biomass and apoptosis upon neem exposure. Complex-I deficiency due to the loss of Ndufa1-encoded MWFE protein inhibited neem-induced caspase activation and apoptosis, but cell death induction was enhanced. Complex II-deficiency due to the loss of succinate dehydrogenase complex subunit C (SDHC) robustly decreased caspase activation, apoptosis, and cell death. Additionally, the ablation of Complexes-I, -III, -IV, and -V together did not inhibit caspase activation. Together, we demonstrate that neem limonoids target OXPHOS system to induce cancer cell death, which does not require upregulation or activation of proapoptotic Bcl-2 family proteins.


Subject(s)
Apoptosis/drug effects , Azadirachta/chemistry , Limonins/pharmacology , Neoplasms/pathology , Oxidative Phosphorylation , Caspases/metabolism , Cyclin-Dependent Kinase Inhibitor p21/physiology , DNA, Mitochondrial/analysis , Dynamins , Electron Transport Complex I/physiology , GTP Phosphohydrolases/analysis , HCT116 Cells , Humans , Microtubule-Associated Proteins/analysis , Mitochondrial Membrane Transport Proteins/physiology , Mitochondrial Permeability Transition Pore , Mitochondrial Proteins/analysis , Neoplasms/drug therapy , Tumor Suppressor Protein p53/physiology
4.
Biol Res ; 48: 19, 2015 Mar 25.
Article in English | MEDLINE | ID: mdl-25857314

ABSTRACT

BACKGROUND: To evaluate the hepatoprotective potential and invitro cytotoxicity studies of whole plant methanol extract of Rumex vesicarius L. Methanol extract at a dose of 100 mg/kg bw and 200 mg/kg bw were assessed for its hepatoprotective potential against CCl4-induced hepatotoxicity by monitoring activity levels of SGOT (Serum glutamic oxaloacetic transaminase), SGPT (Serum glutamic pyruvic transaminase), ALP (Alkaline phosphatase), TP (Total protein), TB (Total bilirubin) and SOD (Superoxide dismutase), CAT (Catalase), MDA (Malondialdehyde). The cytotoxicity of the same extract on HepG2 cell lines were also assessed using MTT assay method at the concentration of 62.5, 125, 250, 500 µg/ml. RESULTS: Pretreatment of animals with whole plant methanol extracts of Rumex vesicarius L. significantly reduced the liver damage and the symptoms of liver injury by restoration of architecture of liver. The biochemical parameters in serum also improved in treated groups compared to the control and standard (silymarin) groups. Histopathological investigation further corroborated these biochemical observations. The cytotoxicity results indicated that the plant extract which were inhibitory to the proliferation of HepG2 cell line with IC50 value of 563.33 ± 0.8 µg/ml were not cytotoxic and appears to be safe. CONCLUSIONS: Rumex vesicarius L. whole plant methanol extract exhibit hepatoprotective activity. However the cytotoxicity in HepG2 is inexplicable and warrants further study.


Subject(s)
Cell Proliferation/drug effects , Chemical and Drug Induced Liver Injury/drug therapy , Cytotoxins/pharmacology , Phytotherapy/methods , Plant Extracts/pharmacology , Rumex/chemistry , Alanine Transaminase/metabolism , Alkaline Phosphatase/metabolism , Animals , Anticarcinogenic Agents/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology , Aspartate Aminotransferases/metabolism , Bilirubin/metabolism , Carbon Tetrachloride , Catalase/metabolism , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Drinking/drug effects , Eating/drug effects , Formazans , Hep G2 Cells , Humans , Liver/drug effects , Liver/metabolism , Male , Malondialdehyde/metabolism , Methanol , Rats, Wistar , Silymarin/pharmacology , Superoxide Dismutase/metabolism , Tetrazolium Salts
5.
Biol. Res ; 48: 1-9, 2015. ilus, graf, tab
Article in English | LILACS | ID: biblio-950783

ABSTRACT

BACKGROUND: To evaluate the hepatoprotective potential and invitro cytotoxicity studies of whole plant methanol extract of Rumex vesicarius L. Methanol extract at a dose of 100 mg/kg bw and 200 mg/kg bw were assessed for its hepatoprotective potential against CCl4-induced hepatotoxicity by monitoring activity levels of SGOT (Serum glutamic oxaloacetic transaminase), SGPT (Serum glutamic pyruvic transaminase), ALP (Alkaline phosphatase), TP (Total protein), TB (Total bilirubin) and SOD (Superoxide dismutase), CAT (Catalase), MDA (Malondialdehyde). The cytotoxicity of the same extract on HepG2 cell lines were also assessed using MTT assay method at the concentration of 62.5, 125, 250, 500 µg/ml. RESULTS: Pretreatment of animals with whole plant methanol extracts of Rumex vesicarius L. significantly reduced the liver damage and the symptoms of liver injury by restoration of architecture of liver. The biochemical parameters in serum also improved in treated groups compared to the control and standard (silymarin) groups. Histopathological investigation further corroborated these biochemical observations. The cytotoxicity results indicated that the plant extract which were inhibitory to the proliferation of HepG2 cell line with IC50 value of 563.33 ± 0.8 Mg/ml were not cytotoxic and appears to be safe. CONCLUSIONS: Rumex vesicarius L. whole plant methanol extract exhibit hepatoprotective activity. However the cytotoxicity in HepG2 is inexplicable and warrants further study.


Subject(s)
Humans , Animals , Male , Rats , Plant Extracts/pharmacology , Cytotoxins/pharmacology , Rumex/chemistry , Cell Proliferation/drug effects , Chemical and Drug Induced Liver Injury/drug therapy , Phytotherapy/methods , Aspartate Aminotransferases/metabolism , Silymarin/pharmacology , Superoxide Dismutase/metabolism , Tetrazolium Salts , Bilirubin/metabolism , Carbon Tetrachloride , Catalase/metabolism , Anticarcinogenic Agents/pharmacology , Rats, Wistar , Alanine Transaminase/metabolism , Methanol , Drinking/drug effects , Eating/drug effects , Alkaline Phosphatase/metabolism , Hep G2 Cells , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Formazans , Liver/drug effects , Liver/metabolism , Malondialdehyde/metabolism , Antioxidants/metabolism , Antioxidants/pharmacology
6.
ISRN Pharmacol ; 2014: 975303, 2014.
Article in English | MEDLINE | ID: mdl-25006495

ABSTRACT

The present study was carried out to investigate the thrombolytic and antimitotic potentiality of various extracts of fruits of Ficus glomerata, a traditional medicinal plant, using an in vitro assay method. Three crude extracts such as petroleum ether (FGPE), chloroform (FGCE), and methanol (FGME) were used for the study, with a standard (streptokinase) and negative control (sterile distilled water) to validate the method. The thrombolytic nature of the plant was found significant with methanol extract and chloroform and petroleum ether extracts have recorded mild activity, when compared with the negative control (sterile distilled water). The extracts have shown mild clot lysis, that is, 2.16%, 23.06%, 27.60%, and 47.74% of sterile distilled water, FGPE, FGCE, and FGME, respectively, while the standard (streptokinase) has shown 74.22% clot lysis. FGME inhibited the root growth in number as well as length effectively, followed by FGPE, while FGCE exhibited moderate antimitotic activity and it was supported by mitotic index. Therefore, the obtained results suggest that among all the extracts of plant the methanolic extract has shown highest thrombolytic and antimitotic activity.

7.
Int J Bacteriol ; 2014: 175851, 2014.
Article in English | MEDLINE | ID: mdl-26904730

ABSTRACT

The flavonoid apigenin was isolated from aerial part of P. oleracea L. The dried sample of plant was powdered and subjected to soxhlet extractor by adding 80 mL of ethanol : water (70 : 30). The extract was centrifuged at 11000 rpm for 30 min; supernatant was taken for further use. The fraction was concentrated and subjected to PTLC. The R f value of isolated apigenin was calculated (0.82). Purified material was also subjected to its IR spectra, LC-MS, NMR, and HPLC for structural elucidation. The apigenin so-obtained was subjected to antibacterial activity on five pathogenic bacterial strains like Pseudomonas aeruginosa, Salmonella typhimurium, Proteus mirabilis, Klebsiella pneumoniae and Enterobacter aerogenes; among all the bacterial strains, Salmonella typhimurium (17.36 ± 0.18) and Proteus mirabilis (19.12 ± 0.01) have shown maximum diameter of inhibition zone for flavonoid and remaining bacterial strains have shown moderate diameter of inhibition zone when compared with control values 14.56 ± 0.21 and 11.68 ± 0.13, respectively. The minimum inhibitory concentration (MIC) of the flavonoid isolated from P. oleracea L. was tested at the concentration ranging from undiluted sample to 10 mg per mL of concentration. The minimum inhibition concentration (MIC) for the flavonoid for all tested bacterial strains was found to be >4 mg per mL. Hence, the apigenin has antibacterial property and can be used to develop antibacterial drugs.

8.
World J Gastrointest Oncol ; 1(1): 82-8, 2009 Oct 15.
Article in English | MEDLINE | ID: mdl-21160779

ABSTRACT

AIM: To examine the antiulcerogenic effects of various extracts of Mentha arvensis Linn on acid, ethanol and pylorus ligated ulcer models in rats and mice. METHODS: Various crude extracts of petroleum ether, chloroform, or aqueous at a dose of 2 g/kg po did not produce any signs or symptoms of toxicity in treated animals. In the pyloric ligation model oral administration of different extracts such as petroleum ether, chloroform and aqueous at 375 mg/kg po, standard drug ranitidine 60 mg/kg po and control group 1% Tween 80, 5 mL/kg po to separate groups of Wister rats of either sex (n = 6) was performed. Total acidity, ulcer number, scoring, incidence, area, and ulcer index were assessed. RESULTS: There was a decrease in gastric secretion and ulcer index among the treated groups i.e. petroleum ether (53.4%), chloroform (59.2%), aqueous (67.0%) and in standard drug (68.7%) when compared to the negative control. In the 0.6 mol/L HCl induced ulcer model in rats (n = 6) there was a reduction in ulcerative score in animals receiving petroleum ether (50.5%), chloroform (57.4%), aqueous (67.5%) and standard. drug (71.2%) when compared to the negative control. In the case of the 90% ethanol-induced ulceration model (n = 6) in mice, there was a decrease in ulcer score in test groups of petroleum ether (53.11%), chloroform (62.9%), aqueous (65.4%) and standard drug ranitidine (69.7%) when compared to the negative control. It was found that pre-treatment with various extracts of Mentha arvensis Linn in three rat/mice ulcer models ie ibuprofen plus pyloric ligation, 0.6 mol/L HCl and 90% ethanol produced significant action against acid secretion (49.3 ± 0.49 vs 12.0 ± 0.57, P < 0.001). Pre-treatment with various extracts of Mentha arvensis Linn showed highly -significant activity against gastric ulcers (37.1 ± 0.87 vs 12.0 ± 0.57, P < 0.001). CONCLUSION: Various extracts of Mentha arvensis Linn. 375 mg/kg body weight clearly shows a protective effect against acid secretion and gastric ulcers in ibuprofen plus pyloric ligation, 0.6 mol/L HCl induced and 90% ethanol-induced ulcer models.

SELECTION OF CITATIONS
SEARCH DETAIL
...