Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
ACS Omega ; 9(11): 12725-12733, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38524463

ABSTRACT

Various plant-based materials effectively absorb oil contaminants at the water/air interface. These materials showcase unparalleled efficiency in purging oil contaminants, encompassing rivers, lakes, and boundless oceans, positioning them as integral components of environmental restoration endeavors. In addition, they are biodegradable, readily available, and eco-friendly, thus making them a preferable choice over traditional oil cleaning materials. This study explores the phenomenal properties of the floating Azolla fern (Azolla pinnata), focusing on its unique hierarchical leaf surface design at both the microscale and nanoscale levels. These intricate structures endow the fern with exceptional characteristics, including superhydrophobicity, high water adhesion, and remarkable oil or organic solvent absorption capabilities. Azolla's leaf surface exhibits a rare combination of dual wettability, where hydrophilic spots on a superhydrophobic base enable the pinning of water droplets, even when positioned upside-down. This extraordinary property, known as the parahydrophobic state, is rare in floating plants, akin to the renowned Salvinia molesta, setting Azolla apart as a natural wonder. Submerged in water, Azolla leaves excel at absorbing light oils at the air-water interface, demonstrating a notable ability to extract high-density organic solvents. Moreover, Azolla's rapid growth, doubling in the area every 4-5 days, especially in flowing waters, positions it as a sustainable alternative to traditional synthetic oil-cleaning materials with long-term environmental repercussions. This scientific lead could pave the way for more environmentally friendly approaches to mitigate the negative impacts of oil spills and promote a cleaner water ecosystem.

2.
ACS Appl Mater Interfaces ; 16(10): 13225-13233, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38407994

ABSTRACT

The development of a Janus membrane with contrasting chemical functionality/or wettability on opposite faces has shown great promise as a passive and energy-efficient oil/water separation technology. Notably, one side of the membrane is designed hydrophilic (i.e., water-attracting in air and underwater oleophobic) and the other hydrophobic (i.e., water-repelling in air and underwater oleophilic). The distinctive surface wettability features of the membrane allow it to repel water and attract oil without consuming energy, thus making it an attractive technology for passively separating oil/water mixtures. The hydrophobic face of the membrane captures oil droplets while allowing water to pass through, and the hydrophilic side attracts water droplets and allows oil to pass. Nonetheless, crafting a Janus membrane is complex, tedious, and expensive. To overcome these limitations, an easy and inexpensive two-step fabrication process for the Janus membrane is proposed in this work. The first step involves creating a superhydrophilic face by the hydrothermally guided deposition of nanoneedles on either side of a commercially available hydrophobic carbon sheet. In the second step, the double-faced surface is subjected to a pulsed laser to create conical micropores studied for oil/water separation. The fabricated membrane is economically affordable and environment friendly. Besides being energy-efficient (as the separation process works passively), the membrane demonstrates an efficient oil/water separating performance. The potential application of this work is diverse and impactful, encompassing wastewater treatment, oil spill cleanup, and various industrial separation processes.

3.
RSC Adv ; 13(50): 35050-35064, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38046629

ABSTRACT

Recently, there has been a significant increase in academic and industrial interest in self-healing polymers (SHPs) due to their remarkable ability to regenerate scratched surfaces and materials of astronomical significance. Scientists have been inspired by the magical repairing mechanism of the living world. They transformed the fiction of self-healing into reality by designing engrossing polymeric materials that could self-repair mechanical abrasions repeatedly. As a result, the durability of the materials is remarkably improved. Thus, the idea of studying SHPs passively upholds economic and environmental sustainability. However, the critical areas of self-healing (including healing efficiency, healing mechanism, and thermo-mechanical property changes during healing) are under continuous scientific improvisation. This review highlights recent notable advances of SHPs for application in regenerating scratched surfaces with various distinctive underlying mechanisms. The primary focus of the work is aimed at discussing the impact of SHPs on scratch-healing technology. Beyond that, insights regarding scratch testing, methods of investigating polymer surfaces, wound depths, the addition of healing fillers, and the environmental conditions maintained during the healing process are reviewed thoroughly. Finally, broader future perspectives on the challenges and prospects of SHPs in healing surface scratches are discussed.

4.
Langmuir ; 39(17): 6178-6187, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37071560

ABSTRACT

Wetting has an essential pertinence to surface applications. The exemplary water-repelling and self-cleaning surfaces in nature have stimulated considerable scientific exploration, given their practical leverage in cleaning window glasses, painted surfaces, fabrics, and solar cells. Here, we explored the three-tier hierarchical surface structure of the Trifolium leaf with distinguished self-cleaning characteristics. The leaf remains fresh, withstands adverse weather, thrives throughout the year, and self-cleans itself against mud or dust. Self-cleaning features are attributed to a three-tier hierarchical synergetic design. The leaf surface is explicated by an optical microscope, a scanning electron microscope, a three-dimensional profilometer, and a water contact angle measuring device. Hierarchical base roughness (i.e., nano-/microscale) comprises a fascinating arrangement, which imparts a superhydrophobic feature to the surface. As a result, the contaminants present on the leaf surface are washed with rolling water droplets. We noticed that self-cleaning is a function of impacting or rolling droplets, and the rolling mechanism is identified as efficient. The self-cleaning phenomenon is studied for contaminations of variable sizes, shapes, and compositions. The contaminations are supplied in both dry and aqueous mixtures. Furthermore, we examined the self-cleaning effect of the Trifolium leaf surface by atmospheric water harvesting. The captured water drops fuse, roll, descend, and wash away the contaminating particles. The diversity of contaminants investigated makes this study applicable to different environmental conditions. And, along with other parallel technologies, this investigation could be useful for crafting sustainable self-cleaning surfaces for regions with acute water scarcity.

5.
ACS Appl Bio Mater ; 6(1): 44-63, 2023 01 16.
Article in English | MEDLINE | ID: mdl-36580351

ABSTRACT

Across the globe, the quest for clean water is escalating for both households as well as agricultural exigencies. With the industrial revolution and swift population growth, the contamination of natural water bodies has impacted the lives of more than two billion people around the world. A spectrum of water-saving solutions has been examined. Nonetheless, most of them are either energy-inefficient or limited to only a particular region. Thus, the pursuit of clean and potable drinking water is an assignment that invites collective discourse from scientists, policymakers, and innovators. In this connection, the presence of moisture in the atmosphere is considered one of the major sources of potential freshwater. Thus, fishing in atmospheric water is a mammoth opportunity. Atmospheric water harvesting (AWH) by some plants and animals in nature (particularly in deserts or arid regions) at low humidity serves as an inspiration for crafting state-of-the-art water harvesting structures and surfaces to buffer the menace of acute water scarcity. Though a lot of research articles and reviews have been reported on bioinspired structures with applications in water and energy harvesting, the area is still open for significant improvisation. This work will address the multidimensional-based AWH ability of natural surfaces or fabricated structures without the involvement of toxic chemicals. Moreover, the review will discuss the availability of clean technologies for emulating fascinating natural surfaces on an industrial scale. In the end, the current challenges and the future scope of bioinspired water harvesters will be discussed for pushing greener technologies to confront climate change.


Subject(s)
Atmosphere , Water , Animals , Water/chemistry , Humidity
6.
RSC Adv ; 12(14): 8691-8707, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35424805

ABSTRACT

Electronic skins (e-skins) are soft (deformable and stretchable) state-of-the-art wearable devices that emulate the attributes of human skin and act as a Human-Machine Interface (HMI). Recent advances in e-skin for real-time detection of medical signals such as pulse, temperature, electromyogram (EMG), electroencephalogram (EEG), electrooculogram (EOG), electrocardiogram (ECG), and other bioelectric signals laid down an intelligent foundation for early prediction and diagnosis of diseases with a motive of reducing the risk of the ailment reaching to the end stage. In particular, sweat testing has been employed in diverse applications ranging from medical diagnosis of diabetes, cystic fibrosis, tuberculosis, blood pressure, and autonomic neuropathy to evaluating fluid and electrolyte balance in athletes. Typically, sweat testing techniques are done by trained experts and require off-body measurements, which prevent individuals from de-coding health issues quickly and independently. With the onset of soft electronics, wearable sweat sensors overcome this disadvantage via in situ sweat measurements with real-time feedback, timely diagnosis, creating the potential for preventive care and treatment. Over the past few decades, wearable microfluidic-based e-skin sweat sensors have paved a new way, promising sensing interfaces that are highly compatible with arranging medical and electronic applications. The present review highlights the recent research carried out in the microfluidic-based wearable sweat sensors with a critical focus on real-time sensing of lactate, chloride, and glucose concentration; sweat rate, simultaneously with pH, and total sweat loss for preventive care, timely diagnosis, and point-of-care health and fitness monitoring.

7.
Adv Exp Med Biol ; 1351: 3-22, 2022.
Article in English | MEDLINE | ID: mdl-35175609

ABSTRACT

Two-dimensional graphene family nanomaterials (GFNs) are extensively studied by the researchers for their quantum size effect, large surface area, numerous reactive functional sites, and biocompatibility. The hybrid materials of GFNs exhibit an increased level of mechanical strength, optical, electronic, and catalytic activity due to their incorporation. The application of GFNs in the energy, environment, electric and electronic, personal care, and health sectors is abundant, which is not only by their unique physicochemical properties but also by their ease and large production by various synthetic approaches and economically inexpensiveness. Their general biomedical applications include bioimaging, biosensing, drug delivery, tissue engineering, killing the microbes, and demolishing the cancer tumor. The first chapter of this book describes definitions, synthetic methods, unique properties, and biomedical applications of GFNs, including graphene, graphene oxide, and reduced graphene oxide.


Subject(s)
Graphite , Nanostructures , Pharmaceutical Preparations , Drug Delivery Systems/methods , Graphite/chemistry , Nanostructures/chemistry , Tissue Engineering/methods
8.
ACS Appl Mater Interfaces ; 14(3): 4690-4698, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-34985254

ABSTRACT

Numerous fascinating hierarchical surfaces from nature, including cactus spines, rice leaves, Namib desert beetle, spider silks, and pitcher plants, have been thoroughly investigated to emulate and architect superior surfaces for capturing sustainable, clean, and safe freshwater from the atmosphere. Hitherto, the adaxial side of biological surfaces has been meticulously investigated for wettability and atmospheric water harvesting (AWH) applications. However, the abaxial face has not yet attracted much scientific scrutiny. Here, we revealed the multifunctional Janus surface traits of Trifolium pratense (i.e., red clover) leaf with extrusive atmospheric water fishing ability on both adaxial and abaxial faces. Water harvesting is performed by conical outgrowths (microhairs). The individual hair's intriguing topography comprises asymmetric shape and surface roughness, which plays synergetic roles in water deposition and directional transport. The water collection quantity on the leaf surface is a function of hair density, which varies significantly on two sides. Noticeably, instead of gravitational pull, the hairs perform water reaping competence under the collective impact of surface energy and Laplace pressure gradients. Consequently, both straight-up and upside-down water harvesting are presented. Furthermore, the leaf surface exhibits dual water wettability features. The upper side manifests the water-repelling and water roll-off phenomenon. In contrast, the lower surface displays a water-retaining/or pinning effect. Optical microscopy, scanning electronic microscopy, real-time optical visualization, and contact angle analysis were employed to characterize the natural and template specimens. The dorsiventral asymmetry of the Trifolium leaf examined in this work could be helpful for a plethora of applications, such as scalable AWH, rainwater collection, self-cleaning, and adhesive fixtures.


Subject(s)
Atmosphere/chemistry , Plant Leaves/chemistry , Trifolium/chemistry , Water/chemistry , Biocompatible Materials , Materials Testing , Particle Size , Surface Properties , Wettability
9.
J Pers Med ; 11(12)2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34945715

ABSTRACT

A newly emerged respiratory viral disease called severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is also known as pandemic coronavirus disease (COVID-19). This pandemic has resulted an unprecedented global health crisis and devastating impact on several sectors of human lives and economies. Fortunately, the average case fatality ratio for SARS-CoV-2 is below 2%, much lower than that estimated for MERS (34%) and SARS (11%). However, COVID-19 has a much higher transmissibility rate, as evident from the constant increase in the count of infections worldwide. This article explores the reasons behind how COVID-19 was able to cause a global pandemic crisis. The current outbreak scenario and causes of rapid global spread are examined using recent developments in the literature, epidemiological features relevant to public health awareness, and critical perspective of risk assessment and mitigation strategies. Effective pandemic risk mitigation measures have been established and amended against COVID-19 diseases, but there is still much scope for upgrading execution and coordination among authorities in terms of organizational leadership's commitment and diverse range of safety measures, including administrative control measures, engineering control measures, and personal protective equipment (PPE). The significance of containment interventions against the COVID-19 pandemic is now well established; however, there is a need for its effective execution across the globe, and for the improvement of the performance of risk mitigation practices and suppression of future pandemic crises.

10.
Biomacromolecules ; 22(4): 1523-1531, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33617232

ABSTRACT

Molecularly imprinted polymers (MIPs) represent an intriguing class of synthetic materials that can selectively recognize and bind chemical or biological molecules in a variety of value-added applications in sensors, catalysis, drug delivery, antibodies, and receptors. In this context, many advanced methods of implementing functional MIP materials have been actively studied. Herein, we report a robust strategy to produce highly ordered arrays of surface-imprinted polymer patterns with unprecedented regularity for MIP-based sensor platform, which involves the controlled evaporative self-assembly process of MIP precursor solution in a confined geometry consisting of a spherical lens on a flat Si substrate (i.e., sphere-on-flat geometry) to synergistically utilize the "coffee-ring" effect and repetitive stick-slip motions of the three-phase contact line simply by solvent evaporation. Highly ordered arrays of the ring-patterned MIP films are then polymerized under UV irradiation to achieve semi-interpenetrating polymer networks. The extraction of templated target molecules from the surface-imprinted ring-patterned MIP films leaves behind copious cavities for the recognizable specific "memory sites" to efficiently detect small molecules. As a result, the elaborated surface structuring effect, sensitivity, and specific selectivity of the coffee-ring-based MIP sensors are scrutinized by capitalizing on an endocrine-disrupting chemical, 2,4-dichlorophenoxyacetic acid (2,4-D), as an example. Clearly, the evaporative self-assembly of nonvolatile solutes in a confined geometry renders the creation of familiar yet ordered coffee-ring-like patterns for a wide range of applications, including sensors, scaffolds for cell motility, templates, substrates for neuron guidance, etc., thereby dispensing with the need of multistep lithography techniques and external fields.


Subject(s)
Endocrine Disruptors , Molecular Imprinting , Coffee , Polymerization , Polymers
11.
Chemphyschem ; 21(8): 814-820, 2020 Apr 20.
Article in English | MEDLINE | ID: mdl-32124533

ABSTRACT

We chose to understand the cyclic instability and rate instability issues in the promising class of Na+ conversion and alloying anodes with Sb2 Se3 as a typical example. We employ a synthetic strategy that ensures efficient rGO (reduced graphene oxide) wrapping over Sb2 Se3 material. By utilization of the minimum weight of additive (5 wt.% of rGO), we achieved a commendable performance with a reversible capacity of 550 mAh g-1 at a specific current of 100 mA g-1 and an impressive rate performance with 100 % capacity retention after high current cycling involving a 2 Ag-1 intermediate current step. The electrochemical galvanostatic intermittent titration technique (GITT) has been employed for the first time to draw a rationale between the enhanced performance and the increased mobility in the rGO wrapped composite (Sb2 Se3 -rGO) compared to bare Sb2 Se3 . GITT analysis reveals higher Na+ diffusion coefficients (approx. 30 fold higher) in the case of Sb2 Se3 -rGO as compared to bare Sb2 Se3 throughout the operating voltage window. For Sb2 Se3 -rGO the diffusion coefficients in the range of 8.0×10-15  cm2 s-1 to 2.2×10-12  cm2 s-1 were observed, while in case of bare Sb2 Se3 the diffusion coefficients in the range of 1.6×10-15  cm2 s-1 to 9.4×10-15  cm2 s-1 were observed.

12.
Bioresour Technol ; 273: 386-393, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30458408

ABSTRACT

Remediation of engineered-nanomaterials is an up-coming major environmental concern. This study demonstrates adsorptive-remediation of cobalt oxide nanoparticles (CoO NPs) from the water. The α-cellulose-fibers were extracted from waste-paper biomass (WP-αCFs) and magnetized with Fe3O4 NPs (M-WP-αCFs). The XRD, FT-IR, and TGA were performed for detailed characterization of the newly developed bioadsorbent. The M-WP-αCFs was then applied for adsorptive remediation of CoO NPs. The adsorptive kinetics of CoO NPs adsorption onto the M-WP-αCFs reveals the pseudo-second-order model. The various adsorption isotherm studies revealed Langmuir is a best-fit isotherm. A prominently high adsorption capacity qm (1567 mg/g) corroborated extraordinary adsorptive potential of M-WP-αCFs. Furthermore, CoO NPs were adsorbed onto M-WP-αCFs were analyzed by the XPS, VSM, and TEM. Therefore, this study gave rise WP biomass extracted and rapidly-separable nano-biocomposite of 'M-WP-αCFs' with a high-capacity for CoO NPs remediation and can be further applied in remediation of several other engineered-nanomaterials.


Subject(s)
Biomass , Cellulose/chemistry , Cobalt/chemistry , Metal Nanoparticles , Oxides/chemistry , Adsorption , Kinetics , Magnets , Water Pollutants, Chemical/chemistry
13.
Sensors (Basel) ; 18(6)2018 Jun 06.
Article in English | MEDLINE | ID: mdl-29882824

ABSTRACT

The conversion of graphene oxide (GO) into reduced graphene oxide (rGO) is imperative for the electronic device applications of graphene-based materials. Efficient and cost-effective fabrication of highly uniform GO films and the successive reduction into rGO on a large area is still a cumbersome task through conventional protocols. Improved film casting of GO sheets on a polymeric substrate with quick and green reduction processes has a potential that may establish a path to the practical flexible electronics. Herein, we report a facile deposition process of GO on flexible polymer substrates to create highly uniform thin films over a large area by a flow-enabled self-assembly approach. The self-assembly of GO sheets was successfully performed by dragging the trapped solution of GO in confined geometry, which consisted of an upper stationary blade and a lower moving substrate on a motorized translational stage. The prepared GO thin films could be selectively reduced and facilitated from the simple laser direct writing process for programmable circuit printing with the desired configuration and less sample damage due to the non-contact mode operation without the use of photolithography, toxic chemistry, or high-temperature reduction methods. Furthermore, two different modes of the laser operating system for the reduction of GO films turned out to be valuable for the construction of novel graphene-based high-throughput electrical circuit boards compatible with integrating electronic module chips and flexible humidity sensors.

14.
Langmuir ; 33(11): 2861-2871, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28233500

ABSTRACT

We demonstrate a direct capillary-driven method based on wetting and evaporation of various suspensions to fabricate regular two-dimensional wires in an open microfluidic channel through continuous deposition of micro- or nanoparticles under evaporative lithography, akin to the coffee-ring effect. The suspension is gently placed in a loading reservoir connected to the main open microchannel groove on a PDMS substrate. Hydrophilic conditions ensure rapid spreading of the suspension from the loading reservoir to fill the entire channel length. Evaporation during the spreading and after the channel is full increases the particle concentration toward the end of the channel. This evaporation-induced convective transport brings particles from the loading reservoir toward the channel end where this flow deposits a continuous multilayered particle structure. The particle deposition front propagates backward over the entire channel length. The final dry deposit of the particles is thereby much thicker than the initial volume fraction of the suspension. The deposition depth is characterized using a 3D imaging profiler, whereas the deposition topography is revealed using a scanning electron microscope. The patterning technology described here is robust and passive and hence operates without an external field. This work may well become a launching pad to construct low-cost and large-scale thin optoelectronic films with variable thicknesses and interspacing distances.

15.
J Lab Autom ; 20(3): 201-15, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25385716

ABSTRACT

Most current drug screening assays used to identify new drug candidates are 2D cell-based systems, even though such in vitro assays do not adequately re-create the in vivo complexity of 3D tissues. Inadequate representation of the human tissue environment during a preclinical test can result in inaccurate predictions of compound effects on overall tissue functionality. Screening for compound efficacy by focusing on a single pathway or protein target, coupled with difficulties in maintaining long-term 2D monolayers, can serve to exacerbate these issues when using such simplistic model systems for physiological drug screening applications. Numerous studies have shown that cell responses to drugs in 3D culture are improved from those in 2D, with respect to modeling in vivo tissue functionality, which highlights the advantages of using 3D-based models for preclinical drug screens. In this review, we discuss the development of microengineered 3D tissue models that accurately mimic the physiological properties of native tissue samples and highlight the advantages of using such 3D microtissue models over conventional cell-based assays for future drug screening applications. We also discuss biomimetic 3D environments, based on engineered tissues as potential preclinical models for the development of more predictive drug screening assays for specific disease models.


Subject(s)
Biomimetics , Drug Evaluation, Preclinical/methods , Tissue Engineering , Animals , High-Throughput Screening Assays , Humans , Nanotechnology , Organ Culture Techniques
16.
Langmuir ; 30(31): 9577-83, 2014 Aug 12.
Article in English | MEDLINE | ID: mdl-25046025

ABSTRACT

The photoresponsive phase separation of a poly(N-isopropylacrylamide-co-spironaphthoxazine methacryloyl-co-allyl-2-(2,6-bis((E)-4-(diphenylamino)styryl)-4H-pyran-4-ylidene)-2-cyanoacetate) random copolymer, i.e., poly(NIPAAm-co-SPO-co-fluorophore), in water-in-oil (W/O) droplets is described. The photoresponsive aqueous droplets were generated in the coflow regime of a simple tubular microfluidic device. The phase separation of the copolymer in the W/O droplets was induced by UV light at 365 nm and was affected significantly by the presence of 2,2-diethoxyacetophenone (DEAP) and sorbitan monooleate (Span 80). When the droplets were subjected to UV irradiation for more than 2 min, the phase-separated copolymer was transferred completely from the aqueous droplet to the continuous phase of hexadecane. The phase separation arises from the photoisomerization shifting the spiro to the merocyanine form of the SPO pendant group in the copolymer, which in turn reduces the hydrophilicity of the copolymer via attractive hydrogen-bonding interactions between the merocyanine group and hydrophobic additives, i.e., Span 80, DEAP, and some stable fragments derived from the photocleavage of DEAP under UV irradiation. These interactions cause the copolymer to associate with the additives and then accelerate the phase separation of the copolymer and subsequent phase transfer of copolymer aggregates. The separate effects of DEAP and Span 80 were also investigated by UV spectrophotometric analysis of the rate coefficient of the reverse transformation (merocyanine to spiro) of the photochromic monomer. We propose a mechanism of phase separation of the copolymer in the W/O droplet based on the NMR and GC-MASS analyses of DEAP.

17.
Chem Commun (Camb) ; 47(9): 2634-6, 2011 Mar 07.
Article in English | MEDLINE | ID: mdl-21234478

ABSTRACT

A synthetic methodology based on microfluidics has been developed to fabricate monodisperse polymer Janus particles by UV-directed phase separation.

18.
Langmuir ; 26(23): 17975-80, 2010 Dec 07.
Article in English | MEDLINE | ID: mdl-21033759

ABSTRACT

We present a simple fabrication of photo- and thermoresponsive microparticles with a narrow size distribution in the PDMS-based microfluidic device. The monodisperse water-in-oil (W/O) droplets of poly(N-isopropylacrylamide-co-spironaphthoxazine methacryloyl) (PNIPA-SPO) were formed at the T-junction channel of the device by adjusting the flow conditions of two immiscible solutions. Subsequently, the droplets were polymerized downstream of the channel under 365 nm UV irradiation in the presence of 2,2'-diethoxyacetophenone (DEAP, photoinitiator) and N,N'-methylenebisacrylamide (MBA, monomer and cross-linker). Being photosensitive, the polymerized microparticles progressively change their color when subjected to UV-vis irradiation. Above the LCST of the copolymer, the microparticles exhibited volume shrinkage accompanied by color deterioration. In addition, the UV light-driven clustering of the PNIPA-SPO copolymer was observed within the W/O droplet in the absence of photoinitiator, which contributed to variable microstructures from Janus to acorn-like and snowman-like morphologies. This work is the first attempt to unveil the photocontrolled asymmetric particle morphology by using the photoresponsive polymer.

SELECTION OF CITATIONS
SEARCH DETAIL
...