Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
Theriogenology ; 218: 26-34, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38295677

ABSTRACT

In cattle, mating to intact, but not vasectomised, bulls has been shown to modify the endometrial transcriptome, suggesting an important role of sperm in the modulation of the uterine environment in this species. However, it is not clear whether these changes are driven by intrinsic sperm factors, or by factors of accessory gland (AG) origin that bind to sperm at ejaculation. Therefore, the aim of the present study was to determine whether ejaculated sperm, which are suspended in the secretions of the AGs, elicit a different endometrial transcriptomic response than epididymal sperm, which have never been exposed to AG factors. To this end, bovine endometrial explants collected from heifers in oestrus were (co-)incubated for 6 h alone (control), or with epididymal sperm or ejaculated sperm, following which transcriptomic changes in the endometrium were evaluated. Epididymal sperm elicited a more dramatic endometrial response than ejaculated sperm, in terms of the number of differentially expressed genes (DEGs). Indeed, RNA-sequencing data analysis revealed 1912 DEGs in endometrial explants exposed to epididymal sperm compared with control explants, whereas 115 DEGs were detected between endometrial explants exposed to ejaculated sperm in comparison to control explants. The top pathways associated with genes upregulated by epididymal sperm included T cell regulation and TNF, NF-KB and IL17 signalling. Interestingly, ejaculated sperm induced downregulation of genes associated with T cell immunity and Th17 differentiation, and upregulation of genes involved in NF-KB signalling, in comparison to epididymal sperm. These data indicate that factors of AG origin modulate the interaction between sperm and the endometrium in cattle.


Subject(s)
Semen , Transcriptome , Cattle , Animals , Male , Female , Semen/metabolism , NF-kappa B/metabolism , Spermatozoa/physiology , Epididymis/metabolism , Endometrium/metabolism , Gene Expression Profiling/veterinary , Ejaculation/physiology
2.
Reprod Fertil Dev ; 36(2): 133-148, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38064189

ABSTRACT

The ovulation of a mature oocyte at metaphase II of meiosis, with optimal potential to undergo fertilisation by a sperm cell, complete meiosis and sustain the switch to mitotic division, and support early embryo development, involves a protracted and disrupted/delayed series of processes. Many of these are targeted for exploitation in vivo , or recapitulation in vitro , by the livestock industry. Reproductive technologies, including AI, multiple ovulation embryo transfer, ovum pick-up, in vitro embryo production, and oestrus and ovulation synchronisation, offer practitioners and producers the opportunity to produce offspring from genetically valuable dams in much greater numbers than they would normally have in their lifetime, while in vitro oocyte and follicle culture are important platforms for researchers to interrogate the physiological mechanisms driving fertility. The majority of these technologies target the ovarian follicle and the oocyte within; thus, the quality and capability of the recovered oocyte determine the success of the reproductive intervention. Molecular and microscopical technologies have grown exponentially, providing powerful platforms to interrogate the molecular mechanisms which are integral to or affected by ART. The development of the bovine oocyte from its differentiation in the ovary to ovulation is described in the light of its relevance to key aspects of individual interventions, while highlighting the historical timeline.


Subject(s)
Oocytes , Semen , Male , Female , Animals , Cattle , Ovarian Follicle/physiology , Oogenesis/physiology , Reproductive Techniques, Assisted/veterinary
3.
Biol Reprod ; 109(5): 749-758, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37658765

ABSTRACT

Harnessing information from the maternal blood to predict fetal growth is attractive yet scarcely explored in livestock. The objectives were to determine the transcriptomic modifications in maternal blood and fetal liver, gonads, and heart according to fetal weight and to model a molecular signature based on the fetal organs allowing the prediction of fetal weight from the maternal blood transcriptome in cattle. In addition to a contemporaneous maternal blood sample, organ samples were collected from 10 male fetuses at 42 days of gestation for RNA-sequencing. Fetal weight ranged from 1.25 to 1.69 g (mean = 1.44 ± 0.15 g). Clustering data analysis revealed clusters of co-expressed genes positively correlated with fetal weight and enriching ontological terms biologically relevant for the organ. For the heart, the 1346 co-expressed genes were involved in energy generation and protein synthesis. For the gonads, the 1042 co-expressed genes enriched seminiferous tubule development. The 459 co-expressed genes identified in the liver were associated with lipid synthesis and metabolism. Finally, the cluster of 571 co-expressed genes determined in maternal blood enriched oxidative phosphorylation and thermogenesis. Next, data from the fetal organs were used to train a regression model of fetal weight, which was predicted with the maternal blood data. The best prediction was achieved when the model was trained with 35 co-expressed genes overlapping between heart and maternal blood (root-mean-square error = 0.04, R2 = 0.93). In conclusion, linking transcriptomic information from maternal blood with that from the fetal heart unveiled maternal blood as a predictor of fetal development.


Subject(s)
Fetal Weight , Transcriptome , Male , Cattle , Animals , Fetal Development/genetics , Organogenesis , Gene Expression Profiling/veterinary
4.
Animal ; 17 Suppl 1: 100775, 2023 May.
Article in English | MEDLINE | ID: mdl-37567682

ABSTRACT

A unique aspect of seasonal-calving pasture-based systems of dairy production is the intense focus placed on achieving a concentrated herd-calving period in late winter and early spring. Hence, excellent reproductive performance is required during a short breeding period. A concentrated calving period also produces a problem in the form of a large number of male dairy calves being born at the same time; as these calves have little economic value due to poor beef merit, they present a potential welfare concern. A solution exists in the form of sex-sorted semen, but this is typically associated with poorer pregnancy per artificial insemination, and hence, the use of sex-sorted semen must be carefully considered. The logical strategy to use sex-sorted semen is to target the best genetic merit dams in the herd to generate replacement heifers, thereby accelerating herd genetic gain. On the other hand, if all dairy farmers adopt such a strategy, there will be a corresponding reduction in elite genetic merit male dairy calves being born, potentially reducing availability of the next generation of future bulls to be used for artificial insemination. Use of in vitro embryo production on elite dairy donors could avoid this problem by acting as a multiplier, potentially in tandem with Y-sorted semen to skew the offspring sex ratio towards more male calves. Use of sex-sorted semen on the best genetic merit dams can also facilitate a marked increase in the usage of beef semen on any dams that are deemed unsuitable for sex-sorted semen. The use of "beef on dairy" requires selection of beef bulls that generate offspring with traits that meet the key requirements of both the dairy farmer (e.g., gestation length and calving ease) and the beef farmer that must be motivated to purchase the calves (e.g., growth rate, age at slaughter, carcass value). Beef breed dams that have elite genetic merit for these traits could also be considered for in vitro embryo production, potentially in tandem with Y-sorted semen, to facilitate genetic gain for the growing "beef-on-dairy" market. It is possible to transfer a beef embryo (75-100% beef breed genetics) into dairy dams that are not required to generate replacements, but this is likely to remain a niche practice as there are many barriers to widespread adoption. Such combinations of assisted reproduction have the potential to improve the efficiency and sustainability metrics of seasonal-calving pasture-based dairy herds.

5.
Sci Rep ; 13(1): 6748, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37185277

ABSTRACT

Enhanced early life nutrition accelerates sexual development in the bull calf through neuroendocrine-signalling mediated via the hypothalamic-pituitary-testicular axis. Our aim was to assess the impact of contrasting feeding regimes in bull calves during the first 12 weeks of life on the testes transcriptome and proteome. Holstein-Friesian bull calves were offered either a high (HI) or moderate (MOD) plane of nutrition, designed to support target growth rates of 1.0 and 0.5 kg/day, respectively. At 12 weeks of age all calves were euthanized, testicular parenchyma sampled, and global transcriptome (miRNAseq and mRNAseq) and proteome analyses undertaken. Bioinformatic analyses revealed 7 differentially expressed (DE) miRNA and 20 DE mRNA. There were no differentially abundant proteins between the two dietary groups. Integration of omics results highlighted a potential role for the cadherin gene, CDH13, in earlier reproductive development. Furthermore, co-regulatory network analysis of the proteomic data revealed CDH13 as a hub protein within a network enriched for processes related to insulin, IGF-1, androgen and Sertoli cell junction signalling pathways as well as cholesterol biosynthesis. Overall, results highlight a potential role for CDH13 in mediating earlier reproductive development as a consequence of enhanced early life nutrition in the bull calf.


Subject(s)
Proteome , Proteomics , Cattle , Animals , Male , Proteome/metabolism , Nutritional Status , Testis/metabolism , Diet/veterinary
6.
Theriogenology ; 200: 25-32, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36739669

ABSTRACT

Elevated circulating progesterone (P4) concentrations in the first week after conception have been associated with accelerated post-hatching conceptus elongation. However, the consequences, if any, on the development of the fetus are unknown. The objective of this study was to determine the relationship between early circulating P4 and fetal and placental morphometric characteristics at 42 days of gestation. A previously validated model of asynchronous embryo transfer (ET), known to alter uterine exposure to P4, was used in 107 heifers divided in two replicates (replicate 1: n = 51, replicate 2: n = 56). Heifers were randomly assigned to one of the two following groups: those receiving a Day 7 embryo on Day 7 of the cycle (synchronous; ET_D7, n = 49) and those transferred a Day 7 embryo on Day 9 of the cycle (asynchronous; ET_D9, n = 58). The synchronization protocol was started two days earlier for heifers in the ET_D9 group such that ET was done on the same day for both groups. P4 concentrations were determined from Day 3 after estrus to the day of ET. Pregnant heifers were slaughtered at Day 42 of gestation for fetal and placental morphometric measurements. The effects of the group, replicate, fetal sex, and interactions between these variables on fetal and placental characteristics were determined by ANOVA, while Pearson correlation was employed to assess the linear relationship between P4 concentrations two days before and on the day of ET on the fetal parameters. The uteri of heifers in the ET_D9 group were exposed to higher concentrations (P < 0.0001) of P4 from four days before ET, than heifers in the ET_D7 group. Both group and fetal sex variables impacted on fetal crown-rump length (CRL) (group: P < 0.0001, sex: P = 0.001) and fetal weight (group: P = 0.006, sex: P = 0.003). Fetal sex influenced the amniotic sac area (P = 0.003) and amniotic sac weight (P = 0.004); while the group affected the number of cotyledons (P = 0.0009), and the fetal heart weight (P = 0.018). All these parameters were larger in the ET_D9 group compared with ET_D7, and in males compared with females. There was a positive correlation between P4 concentrations two days before ET and fetal weight and CRL, for each sex or considering all fetuses (R2 ∼0.4, p < 0.05). In conclusion, bovine embryos transferred into a uterus primed with higher P4 concentrations underwent enhanced development reflected in higher weight and size at the beginning of the fetal period.


Subject(s)
Fetal Weight , Progesterone , Male , Pregnancy , Female , Cattle , Animals , Placenta , Uterus , Parturition
7.
FASEB J ; 37(3): e22809, 2023 03.
Article in English | MEDLINE | ID: mdl-36753406

ABSTRACT

Early pregnancy loss markedly impacts reproductive efficiency in cattle. The objectives were to model a biologically relevant gene signature predicting embryonic competence for survival after integrating transcriptomic data from blastocysts and elongating conceptuses with different developmental capacities and to validate the potential biomarkers with independent embryonic data sets through the application of machine-learning algorithms. First, two data sets from in vivo-produced blastocysts competent or not to sustain a pregnancy were integrated with a data set from long and short day-15 conceptuses. A statistical contrast determined differentially expressed genes (DEG) increasing in expression from a competent blastocyst to a long conceptus and vice versa; these were enriched for KEGG pathways related to glycolysis/gluconeogenesis and RNA processing, respectively. Next, the most discriminative DEG between blastocysts that resulted or did not in pregnancy were selected by linear discriminant analysis. These eight putative biomarker genes were validated by modeling their expression in competent or noncompetent blastocysts through Bayesian logistic regression or neural networks and predicting embryo developmental fate in four external data sets consisting of in vitro-produced blastocysts (i) competent or not, or (ii) exposed or not to detrimental conditions during culture, and elongated conceptuses (iii) of different length, or (iv) developed in the uteri of high- or subfertile heifers. Predictions for each data set were more than 85% accurate, suggesting that these genes play a key role in embryo development and pregnancy establishment. In conclusion, this study integrated transcriptomic data from seven independent experiments to identify a small set of genes capable of predicting embryonic competence for survival.


Subject(s)
Blastocyst , Transcriptome , Pregnancy , Cattle , Animals , Female , Bayes Theorem , Blastocyst/metabolism , Embryo, Mammalian , Embryonic Development/genetics
8.
Mol Reprod Dev ; 89(9): 399-412, 2022 09.
Article in English | MEDLINE | ID: mdl-35802551

ABSTRACT

Cumulus cells provide an interesting biological material to perform analyses to understand the molecular clues determining oocyte competence. The objective of this study was to analyze the transcriptional differences between cumulus cells from oocytes exhibiting different developmental potentials following individual in vitro embryo production by RNA-seq. Cumulus cells were allocated into three groups according to the developmental potential of the oocyte following fertilization: (1) oocytes developing to blastocysts (Bl+), (2) oocytes cleaving but arresting development before the blastocyst stage (Bl-), and (3) oocytes not cleaving (Cl-). RNAseq was performed on 4 (Cl-) or 5 samples (Bl+ and Bl-) of cumulus cells pooled from 10 cumulus-oocyte complexes per group. A total of 49, 50, and 18 differentially expressed genes (DEGs) were detected in the comparisons Bl+ versus Bl-, Bl+ versus Cl- and Bl- versus Cl-, respectively, showing a fold change greater than 1.5 at an adjusted p value <0.05. Focussing on DEGs in cumulus cells from Bl+ group, 10 DEGs were common to both comparisons (10/49 from Bl+ vs. Bl-, 10/50 from Bl+ vs. Cl-). These DEGs correspond to 6 upregulated genes (HBE1, ITGA1, PAPPA, AKAP12, ITGA5, and SLC1A4), and 4 downregulated genes (GSTA1, PSMB8, FMOD, and SFRP4) in Bl+ compared to the other groups, from which 7 were validated by quantitative PCR (HBE1, ITGA1, PAPPA, AKAP12, ITGA5, PSMB8 and SFRP4). These genes are involved in critical biological functions such as integrin-mediated cell adhesion, oxygen availability, IGF and Wnt signaling or PKA pathway, highlighting specific biological processes altered in incompetent in vitro maturation oocytes.


Subject(s)
Cumulus Cells , In Vitro Oocyte Maturation Techniques , Animals , Blastocyst/metabolism , Cattle , Cumulus Cells/metabolism , Embryonic Development/genetics , Female , Integrins/metabolism , Oocytes/metabolism , Oxygen/metabolism , RNA/metabolism
9.
J Dairy Sci ; 104(12): 12189-12206, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34538485

ABSTRACT

The contribution of the calf enterprise to the profit of the dairy farm is generally considered small, with beef bull selection on dairy farms often not considered a high priority. However, this is likely to change in the future as the rapid rate of expansion of the dairy herd in some countries is set to plateau and improvements in dairy herd fertility combine to reduce the proportion of dairy breed calves required on dairy farms. This presents the opportunity to increase the proportion of beef breed calves born, increasing both the value of calf sales and the marketability of the calves. Beef embryos could become a new breeding tool for dairies as producers need to reassess their breeding policy as a consequence of welfare concerns and poor calf prices. Assisted reproductive technologies can contribute to accelerated genetic gain by allowing an increased number of offspring to be produced from genetically elite dams. There are the following 3 general classes of donor females of interest to an integrated dairy-beef system: (1) elite dairy dams, from which oocytes are recovered from live females using ovum pick-up and fertilized in vitro with semen from elite dairy bulls; (2) elite beef dams, where the oocytes are recovered from live females using ovum pick-up and fertilized with semen from elite beef bulls; and (3) commercial beef dams (≥50% beef genetics), where ovaries are collected from the abattoir postslaughter, and oocytes are fertilized with semen from elite beef bulls that are suitable for use on dairy cows (resulting embryo with ≥75% beef genetics). The expected benefits of these collective developments include accelerated genetic gain for milk and beef production in addition to transformation of the dairy herd calf crop to a combination of good genetic merit dairy female calves and premium-quality beef calves. The aim of this review is to describe how these technologies can be harnessed to intensively select for genetic improvement in both dairy breed and beef breed bulls suitable for use in the dairy herd.


Subject(s)
Dairying , Semen , Animals , Cattle/genetics , Female , Fertility/genetics , Male , Milk , Reproductive Techniques, Assisted/veterinary
10.
Sci Rep ; 11(1): 13978, 2021 07 07.
Article in English | MEDLINE | ID: mdl-34234169

ABSTRACT

The aim was to examine the effect of rapid body weight gain during early calfhood consistent with earlier sexual development on the transcriptional profile of the hypothalamus. Angus X Holstein-Friesian heifer calves (19 ± 5 days of age) were offered a high (HI, n = 14) or moderate (MOD, n = 15) plane of nutrition from 3 to 21 weeks of age to achieve a growth rate of 1.2 kg/d and 0.5 kg/d, respectively. Following euthanasia at 21 weeks, the arcuate nucleus (ARC) region was separated from the remainder of the hypothalamus and both were subjected to RNA-Seq. HI calves exhibited altered expression of 80 and 39 transcripts in the ARC and the remaining hypothalamus, respectively (P < 0.05) including downregulation of AGRP and NPY and upregulation of POMC, previously implicated in precocious sexual development. Stress-signaling pathways were amongst the most highly dysregulated. Organ morphology, reproductive system development and function, and developmental disorder were amongst the networks derived from differentially expressed genes (DEGs) in the ARC. Gene co-expression analysis revealed DEGs within the ARC (POMC, CBLN2, CHGA) and hypothalamus (PENK) as hub genes. In conclusion, enhanced nutrition during early calfhood alters the biochemical regulation of the hypothalamus consistent with advanced sexual development in the prepubertal heifer.


Subject(s)
Animal Nutritional Physiological Phenomena , Gene Expression Profiling , Gene Expression Regulation , Hypothalamus/metabolism , Transcriptome , Age Factors , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Cattle , Computational Biology , Gene Regulatory Networks
11.
J Dairy Sci ; 104(10): 11226-11241, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34253371

ABSTRACT

In vitro methods of assessing bull semen quality in artificial insemination (AI) centers are unable to consistently detect individuals of lower fertility, and attempts to reliably predict bull fertility are still ongoing. This highlights the need to identify robust biomarkers that can be readily measured in a practical setting and used to improve current predictions of bull fertility. In this study, we comprehensively analyzed a range of functional, morphological, and intracellular attributes in cryopreserved spermatozoa from a selected cohort of Holstein Friesian AI bulls classified as having either high or low fertility (n = 10 of each fertility phenotype; difference of 11.4% in adjusted pregnancy rate between groups). Here, spermatozoa were assessed for motility and kinematic parameters, morphology, acrosome integrity, plasma membrane lipid packing, viability (or membrane integrity), superoxide production, and DNA integrity. In addition, spermatozoa were used for in vitro fertilization to evaluate their capacity for fertilization and successful embryo development. The information collected from these assessments was then used to phenotypically profile the 2 groups of bulls of divergent fertility status as well as to develop a model to predict bull fertility. According to the results, acrosome integrity and viability were the only sperm attributes that were significantly different between high- and low-fertility bulls. Interestingly, although spermatozoa from low-fertility bulls, on average, had reduced viability and acrosome integrity, this response varied considerably from bull to bull. Principal component analysis revealed a sperm phenotypic profile that represented a high proportion of ejaculates from low-fertility bulls. This was constructed based on the collective influence of several sperm attributes, including the presence of cytoplasmic droplets and superoxide production. Finally, using the combined results as a basis for modeling, we developed a linear model that was able to explain 47% of the variation in bull field fertility in addition to a logistic predictive model that had a 90% chance of distinguishing between fertility groups. Taken together, we conclude that viability and acrosome integrity could serve as fertility biomarkers in the field and, when used alongside other sperm attributes, may be useful in detecting low-fertility bulls. However, the variable nature of low-fertility bulls suggests that additional, in-depth characterization of spermatozoa at a molecular level is required to further understand the etiology of low fertility in dairy bulls.


Subject(s)
Acrosome , Semen Analysis , Animals , Cattle , Female , Fertility , Insemination, Artificial/veterinary , Male , Pregnancy , Semen Analysis/veterinary , Sperm Motility , Spermatozoa
12.
J Anim Sci ; 99(8)2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34175920

ABSTRACT

The objective of this study was to examine the effect of nutrition during the first 12 wk of life on aspects of the physiological and transcriptional regulation of testicular and overall sexual development in the bull calf. Holstein Friesian bull calves with a mean (SD) age and bodyweight of 17.5 (2.85) d and 48.8 (5.30) kg, respectively, were assigned to either a high (HI; n = 15) or moderate (MOD; n = 15) plane of nutrition and were individually fed milk replacer and concentrate to achieve overall target growth rates of at least 1.0 and 0.5 kg/d, respectively. Throughout the trial, animal growth performance, feed intake, and systemic concentrations of metabolites, metabolic hormones, and reproductive hormones were assessed. Additionally, pulsatility of reproductive hormones (luteinizing hormone, follicle-stimulating hormone, and testosterone) was recorded at 15-min intervals during a 10-h period at 10 wk of age. At 87 ± 2.14 d of age, all calves were euthanized, testes were weighed, and testicular tissue was harvested. Differential expression of messenger ribonucleic acid (mRNA) candidate genes involved in testicular development was examined using quantitative polymerase chain reaction assays. All data were analyzed using the MIXED procedure in Statistical Analysis Software using terms for treatment as well as time for repeated measures. Blood metabolites and metabolic hormones generally reflected the improved metabolic status of the calves on the HI plane of nutrition though the concentrations of reproductive hormones were not affected by diet. Calves on the HI diet had greater mean (SED) slaughter weight (112.4 vs. 87.70 [2.98] kg; P < 0.0001) and testicular tissue weight (29.2 vs. 20.1 [2.21] g; P = 0.0003) than those on the MOD diet. Relative mRNA abundance data indicated advanced testicular development through upregulation of genes involved in cellular metabolism (SIRT1; P = 0.0282), cholesterol biosynthesis (EBP; P = 0.007), testicular function (INSL3; P = 0.0077), and Sertoli cell development (CLDN11; P = 0.0054) in HI compared with MOD calves. In conclusion, results demonstrate that offering dairy-bred male calves a high plane of nutrition during the first 3 mo of life not only improves growth performance and metabolic status but also advances testicular development consistent with more precocious sexual maturation.


Subject(s)
Nutritional Status , Testis , Animal Feed/analysis , Animals , Cattle , Diet/veterinary , Follicle Stimulating Hormone , Male , Milk , RNA, Messenger/genetics , Weaning
13.
Biol Reprod ; 105(2): 345-358, 2021 08 03.
Article in English | MEDLINE | ID: mdl-33889937

ABSTRACT

We hypothesized that sexually dimorphic differences exist in the expression of miRNAs in amniotic fluid (AF) and maternal blood plasma (MP) in association with the process of sex determination and gonad differentiation in cattle. Amniotic fluid and MP were collected from six pregnant heifers (three carrying a single male and three a single female embryo) following slaughter on Day 39 postinsemination, coinciding with the peak of SRY expression. Samples (six AF and six MP) were profiled using an miRNA Serum/Plasma Focus PCR Panel. Differentially expressed (DE) miRNAs were identified in AF (n = 5) and associated MP (n = 56) of male vs. female embryos (P < 0.05). Functional analysis showed that inflammatory and immune response were among the 13 biological processes enriched by miRNAs DE in MP in the male group (FDR < 0.05), suggesting that these sex-dependent DE miRNAs may be implicated in modulating the receptivity of the dam to a male embryo. Further, we compared the downstream targets of the sex-dependent DE miRNAs detected in MP with genes previously identified as DE in male vs. female genital ridges. The analyses revealed potential targets that might be important during this developmental stage such as SHROOM2, DDX3Y, SOX9, SRY, PPP1CB, JARID2, USP9X, KDM6A, and EIF2S3. Results from this study highlight novel aspects of sex determination and embryo-maternal communication in cattle such as the potential role of miRNAs in gonad development as well as in the modulation of the receptivity of the dam to a male embryo.


Subject(s)
Amniotic Fluid/chemistry , Gonads/embryology , MicroRNAs/metabolism , Plasma/chemistry , Sex Differentiation/genetics , Animals , Cattle , Female , Male
14.
Sci Rep ; 10(1): 19130, 2020 11 05.
Article in English | MEDLINE | ID: mdl-33154526

ABSTRACT

The ability to predict superstimulatory response would be a beneficial tool in assisted reproduction. Using small RNAseq technology, we profiled extracellular vesicle microRNA (EV-miRNA) abundance in the blood plasma of heifers exhibiting variable responses to superstimulation. Estrous synchronized crossbred beef heifers (n = 25) were superstimulated and blood samples were collected from each heifer on Day 7 of consecutive unstimulated (U) and superstimulated (S) cycles. A subset of high (H) and low (L) responders was selected depending on their response to superstimulation and EV-miRNA profiles were analysed at both time-points in each heifer. Approximately 200 known miRNAs were detected in each sample with 144 commonly detected in all samples. A total of 12 and 14 miRNAs were dysregulated in UH vs. UL and in SH vs. SL heifers, respectively. Interestingly, miR-206 and miR-6517 exhibited the same differential expression pattern in H compared to L heifers both before and after superstimulation. Pathway analysis indicated that circadian rhythm and signaling pathways were among the top pathways enriched with genes targeted by dysregulated miRNAs in H vs. L responding heifers. In conclusion, heifers with divergent ovarian responses exhibited differential expression of plasma EV-miRNAs which may be used as a potential biomarker to predict superstimulation response.


Subject(s)
Estrus Synchronization/metabolism , Extracellular Vesicles/metabolism , MicroRNAs/blood , Ovulation Induction , Animals , Biomarkers/blood , Cattle , Circadian Rhythm/physiology , Estrus/physiology , Female , Ovarian Follicle/physiology , Signal Transduction/physiology
15.
Front Cell Dev Biol ; 8: 547, 2020.
Article in English | MEDLINE | ID: mdl-32766237

ABSTRACT

An appropriate female reproductive environment is essential for pregnancy success. In several species, including mice, pigs and horses, seminal plasma (SP) components have been shown to modulate this environment, leading to increased embryo viability and implantation. Due to the characteristics of mating in the aforementioned species, SP comes into direct contact with the uterus. However, it is questionable whether any SP reaches the uterus in species that ejaculate inside the vagina, such as humans and cattle. Hence, we hypothesized that sperm, perhaps acting as a vehicle for SP factors, play a more important role in the modulation of the maternal uterine environment in these species. In addition, changes elicited by SP and/or sperm may originate in the vagina and propagate to more distal regions of the female reproductive tract. To test these hypotheses, a bovine model in which heifers were mated to intact or vasectomized bulls or were left unmated was used. RNA-sequencing of endometrial samples collected 24 h after mating with a vasectomized bull did not reveal any differentially expressed genes (DEGs) in comparison with control samples. However, the endometrium of heifers mated with intact bulls exhibited 24 DEGs when compared to heifers mated with vasectomized bulls, and 22 DEGs when compared to unmated control heifers. The expression of a set of cytokines (IL6, IL1A, IL8, and TNFA) and candidate genes identified in the endometrial RNA-sequencing (PLA2G10, CX3CL1, C4BPA, PRSS2, BLA-DQB, and CEBPD) were assessed by RT-qPCR in the vagina and oviductal ampulla. No differences in expression of these genes were observed between treatments in any region. However, mating to both intact and vasectomized bulls induced an increase in IL1A and TNFA expression in the vagina compared to the oviduct. These data indicate that sperm, but not secretions from the accessory glands alone, induce modest changes in endometrial gene expression after natural mating in cattle. However, it is not clear whether this effect is triggered by inherent sperm proteins or SP proteins bound to sperm surface at the time of ejaculation.

16.
J Dairy Sci ; 103(10): 9502-9514, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32713696

ABSTRACT

Rising temperatures caused by climate change have adverse effects on cattle physiology, welfare, health, and reproduction. Heat stress in cows affects the oocyte and embryo directly through heat shock on cellular function. Fewer data are available on the effect of high temperatures on male fertility. Temperature-humidity index (THI) is a measure for assessing the risk of heat stress that combines the effects of temperature and humidity. The aim of this study was to determine the relationship between THI and fresh or frozen-thawed sperm quality of Holstein bulls kept in temperate climates. Bull sperm data of 29,170 ejaculates from 933 bulls collected at 3 Dutch artificial insemination centers between 2015 and 2018 were evaluated. The assessed variables included total sperm motility and morphology of fresh semen, and total sperm motility, morphology, and progressive motility of frozen semen 0 and 3 h after thawing. In addition, 56-d nonreturn rates were analyzed. The assessed effects were season and THI on the day of semen collection and during spermatogenesis (30 d before collection), bull, age of bull, year, and location. Bulls were divided into 2 categories according to their age: young (<36 mo) and older (>36 mo). Overall sperm quality of young bulls improved as age increased. No effect of THI on fresh sperm variables was observed in either young or older bulls. However, high THI at spermatogenesis negatively affected the cryotolerance of sperm cells. Sperm cells from young and older bulls showed a pronounced decrease (14-18%) of the assessed variables 3 h after thawing after the increase of THI during spermatogenesis in autumn. Remarkably, older bulls were more sensitive to THI at spermatogenesis compared with semen collection, showing up to a 3.8 times higher negative effect on frozen sperm quality. However, an elevated THI at semen collection produced a tendency toward decreased 56-d nonreturn rates as the age of the bull increased. Although this decrease was up to 4%, rising temperatures may still cause important economic losses in the future. For the first time, the present study confirmed that climate compromises not only sperm quality, but also dairy bull fertility.


Subject(s)
Cattle/physiology , Fertility/physiology , Hot Temperature/adverse effects , Humidity/adverse effects , Spermatozoa/physiology , Animals , Male , Netherlands , Semen Analysis/veterinary
17.
Elife ; 92020 06 02.
Article in English | MEDLINE | ID: mdl-32484434

ABSTRACT

The fusion of gamete membranes during fertilization is an essential process for sexual reproduction. Despite its importance, only three proteins are known to be indispensable for sperm-egg membrane fusion: the sperm proteins IZUMO1 and SPACA6, and the egg protein JUNO. Here we demonstrate that another sperm protein, TMEM95, is necessary for sperm-egg interaction. TMEM95 ablation in mice caused complete male-specific infertility. Sperm lacking this protein were morphologically normal exhibited normal motility, and could penetrate the zona pellucida and bind to the oolemma. However, once bound to the oolemma, TMEM95-deficient sperm were unable to fuse with the egg membrane or penetrate into the ooplasm, and fertilization could only be achieved by mechanical injection of one sperm into the ooplasm, thereby bypassing membrane fusion. These data demonstrate that TMEM95 is essential for mammalian fertilization.


Subject(s)
Fertilization , Infertility, Male/genetics , Membrane Proteins/metabolism , Seminal Plasma Proteins/metabolism , Sperm-Ovum Interactions/genetics , Animals , Cell Biology , Cell Membrane/metabolism , Developmental Biology , Female , Gene Editing , Genes, Reporter , Immunoglobulins/genetics , Immunoglobulins/metabolism , Male , Mammals , Membrane Proteins/genetics , Mice , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Seminal Plasma Proteins/genetics , Spermatozoa/physiology
18.
Front Cell Dev Biol ; 8: 341, 2020.
Article in English | MEDLINE | ID: mdl-32478076

ABSTRACT

A growing body of evidence suggests that paternal factors have an impact on offspring development. These studies have been mainly carried out in mice, where seminal plasma (SP) has been shown to regulate endometrial gene expression and impact embryo development and subsequent offspring health. In cattle, infusion of SP into the uterus also induces changes in endometrial gene expression, however, evidence for an effect of SP on early embryo development is lacking. In addition, during natural mating, the bull ejaculates in the vagina; hence, it is not clear whether any SP reaches the uterus in this species. Thus, the aim of the present study was to determine whether SP exposure leads to improved early embryo survival and developmental rates in cattle. To this end, Day 7 in vitro produced blastocysts were transferred to heifers (12-15 per heifer) previously mated to vasectomized bulls (n = 13 heifers) or left unmated (n = 12 heifers; control). At Day 14, heifers were slaughtered, and conceptuses were recovered to assess size, morphology and expression of candidate genes involved in different developmental pathways. Additionally, CL volume at Day 7, and weight and volume of CL at Day 14 were recorded. No effect of SP on CL volume and weight not on conceptus recovery rate was observed. However, filamentous conceptuses recovered from SP-exposed heifers were longer in comparison to the control group and differed in expression of CALM1, CITED1, DLD, HNRNPDL, PTGS2, and TGFB3. In conclusion, data indicate that female exposure to SP during natural mating can affect conceptus development in cattle. This is probably achieved through modulation of the female reproductive environment at the time of mating.

19.
Int J Mol Sci ; 21(8)2020 Apr 20.
Article in English | MEDLINE | ID: mdl-32325999

ABSTRACT

Interferon Tau (IFNT), the conceptus-derived pregnancy recognition signal in cattle, significantly modifies the transcriptome of the endometrium. However, the endometrium also responds to IFNT-independent conceptus-derived products. The aim of this study was to determine what proteins are produced by the bovine conceptus that may facilitate the pregnancy recognition process in cattle. We analysed by mass spectrometry the proteins present in conceptus-conditioned media (CCM) after 6 h culture of Day 16 bovine conceptuses (n = 8) in SILAC media (arginine- and lysine-depleted media supplemented with heavy isotopes) and the protein content of extracellular vesicles (EVs) isolated from uterine luminal fluid (ULF) of Day 16 pregnant (n = 7) and cyclic (n = 6) cross-bred heifers on day 16. In total, 11,122 proteins were identified in the CCM. Of these, 5.95% (662) had peptides with heavy labelled amino acids, i.e., de novo synthesised by the conceptuses. None of these proteins were detected in the EVs isolated from ULF. Pregnancy-associated glycoprotein 11, Trophoblast Kunitz domain protein 1 and DExD-Box Helicase 39A were de novo produced and present in the CCM from all conceptuses and in previously published CCM data following 6 and 24 h. A total of 463 proteins were present in the CCM from all the conceptuses in the present study, and after 6 and 24 h culture in a previous study, while expression of their transcripts was not detected in endometrium indicating that they are likely conceptus-derived. Of the proteins present in the EVs, 67 were uniquely identified in ULF from pregnant heifers; 35 of these had been previously reported in CCM from Day 16 conceptuses. This study has narrowed a set of conceptus-derived proteins that may be involved in EV-mediated IFNT-independent embryo-maternal communication during pregnancy recognition in cattle.


Subject(s)
Embryo, Mammalian , Embryonic Development/genetics , Protein Biosynthesis , Animals , Cattle , Computational Biology/methods , Endometrium/metabolism , Extracellular Vesicles/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation, Developmental , Gene Ontology , Pregnancy , Reproducibility of Results , Time Factors , Transcriptome
20.
Reproduction ; 159(5): 643-657, 2020 05.
Article in English | MEDLINE | ID: mdl-32168470

ABSTRACT

In cattle, embryo transfer into the uterine horn contralateral to the corpus luteum results in a higher incidence of pregnancy loss compared to transfer into the ipsilateral horn. We have previously reported temporal changes in the endometrial transcriptome during the estrous cycle which differ between uterine horns. The objective of this study was to compare the transcriptomic response of endometrium from the ipsilateral and contralateral horns to an elongating conceptus. Cross-bred beef heifers (n = 16) were synchronized and either used to generate day 14 conceptuses following the transfer of in vitro-produced blastocysts or to obtain day 14 endometrial explants. Conceptuses were recovered on day 14 by post-mortem uterine flushing, placed individually on top of explants collected from the ipsilateral (IPSI-D14) or the contralateral (CONTRA-D14) uterine horn of cyclic heifers, and co-cultured for 6 h. The response to a conceptus was markedly different between uterine horns, with 61 and 239 differentially expressed genes (DEGs; false discovery rate <0.05) in the ipsilateral and contralateral horns, respectively, compared to their controls. Direct comparison between IPSI-D1 and CONTRA-D14 revealed 32 DEGs, including CXCL11, CXCL10, IFIT2, RSAD2 and SAMD9. Gene Ontology analysis of these 32 genes revealed ten enriched biological processes, mainly related to immune response and response to an external stimulus. These data indicate that the endometrial response to the presence of a conceptus varies between uterine horns in the same uterus and may contribute to the higher incidence of pregnancy loss following embryo transfer to the contralateral horn.


Subject(s)
Corpus Luteum/physiology , Embryo Implantation/physiology , Endometrium/metabolism , Animals , Cattle , Embryo Transfer/veterinary , Female , Gene Expression , Pregnancy , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...