Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 187(7): 1685-1700.e18, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38503280

ABSTRACT

The reciprocal coordination between cholesterol absorption in the intestine and de novo cholesterol synthesis in the liver is essential for maintaining cholesterol homeostasis, yet the mechanisms governing the opposing regulation of these processes remain poorly understood. Here, we identify a hormone, Cholesin, which is capable of inhibiting cholesterol synthesis in the liver, leading to a reduction in circulating cholesterol levels. Cholesin is encoded by a gene with a previously unknown function (C7orf50 in humans; 3110082I17Rik in mice). It is secreted from the intestine in response to cholesterol absorption and binds to GPR146, an orphan G-protein-coupled receptor, exerting antagonistic downstream effects by inhibiting PKA signaling and thereby suppressing SREBP2-controlled cholesterol synthesis in the liver. Therefore, our results demonstrate that the Cholesin-GPR146 axis mediates the inhibitory effect of intestinal cholesterol absorption on hepatic cholesterol synthesis. This discovered hormone, Cholesin, holds promise as an effective agent in combating hypercholesterolemia and atherosclerosis.


Subject(s)
Cholesterol , Hormones , RNA-Binding Proteins , Animals , Humans , Mice , Cholesterol/metabolism , Hormones/genetics , Hormones/metabolism , Hypercholesterolemia/metabolism , Liver/metabolism , Signal Transduction , RNA-Binding Proteins/metabolism
2.
Cell Res ; 33(4): 273-287, 2023 04.
Article in English | MEDLINE | ID: mdl-36806353

ABSTRACT

The intestine is responsible for nutrient absorption and orchestrates metabolism in different organs during feeding, a process which is partly controlled by intestine-derived hormones. However, it is unclear whether the intestine plays an important role in metabolism during fasting. Here we have identified a novel hormone, famsin, which is secreted from the intestine and promotes metabolic adaptations to fasting. Mechanistically, famsin is shed from a single-pass transmembrane protein, Gm11437, during fasting and then binds OLFR796, an olfactory receptor, to activate intracellular calcium mobilization. This famsin-OLFR796 signaling axis promotes gluconeogenesis and ketogenesis for energy mobilization, and torpor for energy conservation during fasting. In addition, neutralization of famsin by an antibody improves blood glucose profiles in diabetic models, which identifies famsin as a potential therapeutic target for treating diabetes. Therefore, our results demonstrate that communication between the intestine and other organs by a famsin-OLFR796 signaling axis is critical for metabolic adaptations to fasting.


Subject(s)
Blood Glucose , Fasting , Fasting/physiology , Blood Glucose/metabolism , Gluconeogenesis/physiology , Hormones/metabolism , Ketone Bodies/metabolism , Liver/metabolism
5.
Cell Metab ; 30(2): 319-328.e8, 2019 08 06.
Article in English | MEDLINE | ID: mdl-31230984

ABSTRACT

Asprosin is a fasting-induced hormone that promotes glucose production in the liver and stimulates appetite in the hypothalamus by activating the cAMP signaling pathway via an unknown G protein-coupled receptor (GPCR). However, the bona fide receptor of Asprosin is unclear. Here, we have identified that the olfactory receptor OLFR734 acts as a receptor of Asprosin to modulate hepatic glucose production. Olfr734 knockout mice show a blunted response to Asprosin, including attenuated cAMP levels and hepatic glucose production, and improved insulin sensitivity. As Olfr734 deficiency dramatically attenuates both fasting and high-fat-diet-induced glucose production, our results demonstrate a critical role of OLFR734 as a receptor of Asprosin to maintain glucose homeostasis during fasting and in obesity.


Subject(s)
Glucose/metabolism , Receptors, Odorant/metabolism , 3T3-L1 Cells , Animals , Cells, Cultured , HEK293 Cells , Hep G2 Cells , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Receptors, Odorant/deficiency
6.
Cell Res ; 27(6): 748-763, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28374748

ABSTRACT

Lysosomes are centers for nutrient sensing and recycling that allow mammals to adapt to starvation. Regulation of lysosome dynamics by internal nutrient signaling is well described, but the mechanisms by which external cues modulate lysosomal function are unclear. Here, we describe an essential role of the fasting-induced hormone fibroblast growth factor 21 (FGF21) in lysosome homeostasis in mice. Fgf21 deficiency impairs hepatic lysosomal function by blocking transcription factor EB (TFEB), a master regulator of lysosome biogenesis and autophagy. FGF21 induces mobilization of calcium from the endoplasmic reticulum, which activates the transcriptional repressor downstream regulatory element antagonist modulator (DREAM), and thereby inhibits expression of Mid1 (encoding the E3 ligase Midline-1). Protein phosphatase PP2A, a substrate of MID1, accumulates and dephosphorylates TFEB, thereby upregulating genes involved in lysosome biogenesis, autophagy and lipid metabolism. Thus, an FGF21-TFEB signaling axis links lysosome homeostasis with extracellular hormonal signaling to orchestrate lipid metabolism during fasting.


Subject(s)
Autophagy/physiology , Fasting/physiology , Lysosomes/metabolism , Animals , Autophagy/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Mice , Microtubule Proteins/genetics , Microtubule Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Signal Transduction/physiology , Transcription Factors/genetics , Transcription Factors/metabolism , Ubiquitin-Protein Ligases
SELECTION OF CITATIONS
SEARCH DETAIL
...