Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 62(44): 18136-18149, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37875401

ABSTRACT

The pursuit of a trivalent plutonium halide phosphine oxide compound, e.g., "PuBr3(OPR)3," instead led to the isolation of the tetravalent trans-PuIVBr4(OPCy3)2, PuBr/Cy, compound by spontaneous oxidation of PuIII. The donating nature of phosphine oxides has allowed the isolation and characterization of PuBr/Cy by crystallographic, multinuclear NMR, solid state, and solution phase UV-vis-NIR spectroscopic techniques. The presence of a putative plutonyl(VI) complex formulated as "trans-PuVIO2Br2(OPCy3)2" was also observed spectroscopically and tentatively by single-crystal X-ray diffraction as a cocrystal of PuBr/Cy. A series of trans-ThX4(OPCy3)2 (X = Cl, ThCl/Cy; Br, ThBr/Cy; I, ThI/Cy) complexes were synthesized for comparison to PuBr/Cy. The triphenylphosphine oxide, OPPh3, complexes, trans-AnI4(OPPh3)2 (An = Th, ThI/Ph; U, UI/Ph), were also synthesized for comparison, completing the series trans-UX4(OPPh3)2 (X = Cl, Br, I), UX/Ph. To enable the synthesis of ThI/Cy and ThI/Ph, a new nonaqueous thorium iodide starting material, ThI4(Et2O)2, was synthesized. The syntheses of organic solvent soluble ThI4L2 (L = Et2O, OPCy3, and OPPh3) are the first examples of crystallographically characterized neutral thorium tetraiodide materials beyond binary ThI4. To show the viability of ThI4(Et2O)2 as a starting material for organothorium chemistry, (C5Me4H)3ThI was synthesized and crystallographically characterized.

2.
Nat Commun ; 14(1): 3774, 2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37355669

ABSTRACT

Structural and electronic characterization of (Cp'3Cm)2(µ-4,4'-bpy) (Cp' = trimethylsilylcyclopentadienyl, 4,4'-bpy = 4,4'-bipyridine) is reported and provides a rare example of curium-carbon bonding. Cp'3Cm displays unexpectedly low energy emission that is quenched upon coordination by 4,4'-bipyridine. Electronic structure calculations on Cp'3Cm and (Cp'3Cm)2(µ-4,4'-bpy) rule out significant differences in the emissive state, rendering 4,4'-bipyridine as the primary quenching agent. Comparisons of (Cp'3Cm)2(µ-4,4'-bpy) with its samarium and gadolinium analogues reveal atypical bonding patterns and electronic features that offer insights into bonding between carbon with f-block metal ions. Here we show the structural characterization of a curium-carbon bond, in addition to the unique electronic properties never before observed in a curium compound.


Subject(s)
Curium , Heterocyclic Compounds , Spectrum Analysis , Carbon , Electronics
3.
Inorg Chem ; 62(16): 6368-6374, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37043631

ABSTRACT

Dinuclear, organometallic, transuranium compounds, (Cp'3M)2(µ-4,4'-bpy) (Cp'- = trimethylsilylcyclopentadienide, 4,4'-bpy = 4,4'-bipyridine, M = Ce, Np, Pu), reported herein provide a rare opportunity to probe the nature of actinide-carbon bonding. Significant splitting of the f-f transitions results from the unusual coordination environment in these complexes and leads to electronic properties that are currently restricted to organoactinide systems. Structural and spectroscopic characterization in the solid state and in solution for (Cp'3M)2(µ-4,4'-bpy) (M = Np, Pu) are reported, and their structural metrics are compared to a cerium analogue.

4.
Nat Chem ; 15(5): 722-728, 2023 May.
Article in English | MEDLINE | ID: mdl-36973433

ABSTRACT

The actinides, from californium to nobelium (Z = 98-102), are known to have an accessible +2 oxidation state. Understanding the origin of this chemical behaviour requires characterizing CfII materials, but investigations are hampered by the fact that they have remained difficult to isolate. This partly arises from the intrinsic challenges of manipulating this unstable element, as well as a lack of suitable reductants that do not reduce CfIII to Cf°. Here we show that a CfII crown-ether complex, Cf(18-crown-6)I2, can be prepared using an Al/Hg amalgam as a reductant. Spectroscopic evidence shows that CfIII can be quantitatively reduced to CfII, and rapid radiolytic re-oxidation in solution yields co-crystallized mixtures of CfII and CfIII complexes without the Al/Hg amalgam. Quantum-chemical calculations show that the Cf‒ligand interactions are highly ionic and that 5f/6d mixing is absent, resulting in weak 5f→5f transitions and an absorption spectrum dominated by 5f→6d transitions.

5.
Inorg Chem ; 61(44): 17730-17737, 2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36283067

ABSTRACT

Two neptunium(III) mellitates, 237Np2(mell)(H2O)9·1.5H2O (Np-1α) and 237Np2(mell)(H2O)8·2H2O (Np-1ß), have been synthesized from 237NpCl4(dme)2 by reduction with KC8 and subsequent reaction with an aqueous solution of mellitic acid (H6mell). Characterization by single-crystal X-ray crystallography and UV-vis-NIR spectroscopy confirms that the neptunium is in its +3 oxidation state and both polymorphs are isostructural to the previously reported plutonium mellitates. Of the two morphologies, Np-1α is indefinitely stable in air, while Np-1ß slowly oxidizes over several months. This is due to the change in the energy of the metal-ligand charge-transfer absorption exhibited by these compounds attributed to differing numbers of carboxylate bonds to Np(III), where in Np-1ß the energy is low enough to result in spontaneous oxidation.

6.
Chem Commun (Camb) ; 58(84): 11791-11794, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36193661

ABSTRACT

The aqueous reaction of sodium pyrithione, (Na)mpo, with 243AmCl3·nH2O yields a dimerized complex, [243Am(mpo)2(µ-O-mpo)(H2O)]2·3H2O. This compound is compared with isostructural lanthanide pyrithionates, where dimerization across the 4f-block is observed to be dependent upon the size of the cation. Unlike in most reported Am(III) UV-visible absorption spectra, [243Am(mpo)2(µ-O-mpo)(H2O)]2·3H2O shows significant splitting in the fingerprint excitations. This is attributed to a unique ligand-field environment, where the Am-mpo bonds possess different bonding compared to the Nd(III) analog because of increasing covalent interactions.

7.
Nat Commun ; 13(1): 201, 2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35017503

ABSTRACT

Variations in bonding between trivalent lanthanides and actinides is critical for reprocessing spent nuclear fuel. The ability to tune bonding and the coordination environment in these trivalent systems is a key factor in identifying a solution for separating lanthanides and actinides. Coordination of 4,4'-bipyridine (4,4'-bpy) and trimethylsilylcyclopentadienide (Cp') to americium introduces unexpectedly ionic Am-N bonding character and unique spectroscopic properties. Here we report the structural characterization of (Cp'3Am)2(µ - 4,4'-bpy) and its lanthanide analogue, (Cp'3Nd)2(µ - 4,4'-bpy), by single-crystal X-ray diffraction. Spectroscopic techniques in both solid and solution phase are performed in conjunction with theoretical calculations to probe the effects the unique coordination environment has on the electronic structure.

8.
Nature ; 583(7816): 396-399, 2020 07.
Article in English | MEDLINE | ID: mdl-32669698

ABSTRACT

Curium is unique in the actinide series because its half-filled 5f 7 shell has lower energy than other 5f n configurations, rendering it both redox-inactive and resistant to forming chemical bonds that engage the 5f shell1-3. This is even more pronounced in gadolinium, curium's lanthanide analogue, owing to the contraction of the 4f orbitals with respect to the 5f orbitals4. However, at high pressures metallic curium undergoes a transition from localized to itinerant 5f electrons5. This transition is accompanied by a crystal structure dictated by the magnetic interactions between curium atoms5,6. Therefore, the question arises of whether the frontier metal orbitals in curium(III)-ligand interactions can also be modified by applying pressure, and thus be induced to form metal-ligand bonds with a degree of covalency. Here we report experimental and computational evidence for changes in the relative roles of the 5f/6d orbitals in curium-sulfur bonds in [Cm(pydtc)4]- (pydtc, pyrrolidinedithiocarbamate) at high pressures (up to 11 gigapascals). We compare these results to the spectra of [Nd(pydtc)4]- and of a Cm(III) mellitate that possesses only curium-oxygen bonds. Compared with the changes observed in the [Cm(pydtc)4]- spectra, we observe smaller changes in the f-f transitions in the [Nd(pydtc)4]- absorption spectrum and in the f-f emission spectrum of the Cm(III) mellitate upon pressurization, which are related to the smaller perturbation of the nature of their bonds. These results reveal that the metal orbital contributions to the curium-sulfur bonds are considerably enhanced at high pressures and that the 5f orbital involvement doubles between 0 and 11 gigapascal. Our work implies that covalency in actinides is complex even when dealing with the same ion, but it could guide the selection of ligands to study the effect of pressure on actinide compounds.

9.
Inorg Chem ; 59(5): 3085-3090, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-32037813

ABSTRACT

The aqueous reaction of mellitic acid (H6mell) with 242PuBr3·nH2O forms two plutonium mellitates, 242Pu2(mell)(H2O)9·H2O (Pu-1α) and 242Pu2(mell)(H2O)8·2H2O (Pu-1ß). These compounds are compared to the isomorphous lanthanide mellitates with similar ionic radii via bond length analysis. Both plutonium compounds form three-dimensional metal-organic frameworks, with Pu-1α having two unique metal centers and Pu-1ß having one. All plutonium metal centers exhibit nine-coordinate geometries. Our results show metal-oxygen bond lengths for plutonium significantly shorter than those of the previously reported lanthanum and herein reported cerium analogues, consistent with the nine-coordinate ionic radii. Clear Laporte-forbidden 5f → 5f transitions are observed in the ultraviolet-visible-near-infrared spectra and are assigned to trivalent plutonium. However, there is a distinct color difference between the two plutonium compounds.

10.
Acta Crystallogr D Struct Biol ; 73(Pt 12): 970-984, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29199977

ABSTRACT

K-Ras, a molecular switch that regulates cell growth, apoptosis and metabolism, is activated when it undergoes a conformation change upon binding GTP and is deactivated following the hydrolysis of GTP to GDP. Hydrolysis of GTP in water is accelerated by coordination to K-Ras, where GTP adopts a high-energy conformation approaching the transition state. The G12A mutation reduces intrinsic K-Ras GTP hydrolysis by an unexplained mechanism. Here, crystal structures of G12A K-Ras in complex with GDP, GTP, GTPγS and GppNHp, and of Q61A K-Ras in complex with GDP, are reported. In the G12A K-Ras-GTP complex, the switch I region undergoes a significant reorganization such that the Tyr32 side chain points towards the GTP-binding pocket and forms a hydrogen bond to the GTP γ-phosphate, effectively stabilizing GTP in its precatalytic state, increasing the activation energy required to reach the transition state and contributing to the reduced intrinsic GTPase activity of G12A K-Ras mutants.


Subject(s)
Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , Guanosine Diphosphate/metabolism , Guanosine Triphosphate/metabolism , Protein Conformation , Proto-Oncogene Proteins p21(ras)/chemistry , Proto-Oncogene Proteins p21(ras)/metabolism , Binding Sites , Crystallography, X-Ray , Humans , Hydrogen Bonding , Hydrolysis , Models, Molecular , Mutation , Proto-Oncogene Proteins p21(ras)/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...