Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(16): 19369-19376, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33861561

ABSTRACT

In an effort to protect metal substrates from extreme heat, polymer-clay multilayer thin films are studied as expendable thermal barrier coatings. Nanocomposite films with a thickness ranging from 2 to 35 µm were deposited on steel plates and exposed to the flame from a butane torch. The 35 µm coating, composed of 14 deposited bilayers of tris(hydroxymethyl)aminomethane (THAM)-buffered polyethylenimine (PEI) and vermiculite clay (VMT), decreased the maximum temperature observed on the back side of a 0.32 cm thick steel plate by over 100 °C when heated with a butane torch. Upon exposure to high temperature, the polymer and amine salt undergo pyrolysis and intumesce, subsequently forming a char and blowing gas. The char encases the nanoclay platelets, and a ceramic bubble is formed. The macro-scale bubble, in tandem with the nanocomposite coating properties, increases resistance to heat transfer into the underlying metal substrate. This heat shielding behavior occurs through radiative effects and low aggregate through-plane conductivity resulting from multilayer nanodomains and intumesced porosity (i.e., conduction through the gas as the film expands to form a ceramic bubble). These relatively thin and lightweight films could be used to protect important metal parts (in automobiles, aircraft, etc.) from fire-related damage or other types of transient high-temperature situations.

2.
Langmuir ; 34(37): 11086-11091, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30149720

ABSTRACT

Limiting oxygen permeation through plastic films is important for extending the shelf life of food and flexible electronic devices. Polyelectrolyte complex (PEC) thin films can be used to reduce small molecule diffusion through commodity plastic films. PEC thin films are frequently applied using layer-by-layer assembly, which often requires many processing cycles to deposit a film with desired thickness. An aqueous solution of poly(diallydimethylammonium chloride) and poly(acrylic acid) can be deposited in a single-step to quickly fabricate a high-oxygen barrier thin film. These films have an ionically bonded network that forms after polyelectrolyte deposition and exposure to buffer. Increasing buffer concentration and adding salt increases film cohesion and improves transparency by reducing surface roughness. When deposited onto a 178 µm poly(ethylene terephthalate) film, a ∼1.9 µm thick PEC coating imparts a 2 orders of magnitude reduction in oxygen transmission rate. Achieving this level of gas barrier with a single thin coating layer creates numerous opportunities for the protection of sensitive food, pharmaceuticals, and electronics.

SELECTION OF CITATIONS
SEARCH DETAIL
...