Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 10(11)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36422331

ABSTRACT

Coxiella burnetii is a Gram-negative, intracellular bacterium that causes the zoonosis Q fever. Among the many natural isolates of C. burnetii recovered from various sources, the Dugway group exhibits unique genetic characteristics, including the largest C. burnetii genomes. These strains were isolated during 1954-1958 from wild rodents from the Utah, USA desert. Despite retaining phase I lipopolysaccharide and the type 4B secretion system, two critical virulence factors, avirulence has been reported in a guinea pig infection model. Using guinea pig models, we evaluated the virulence, whole-cell vaccine (WCV) efficacy, and post-vaccination hypersensitivity (PVH) potential of a representative Dugway strain. Consistent with prior reports, Dugway appeared to be highly attenuated compared to a virulent strain. Indeed, Dugway-infected animals showed similarly low levels of fever, body weight loss, and splenomegaly like Nine Mile II-infected animals. When compared to a human Q fever vaccine, QVax®, Dugway WCV exhibited analogous protection against a heterologous Nine Mile I challenge. PVH was investigated in a skin-testing model which revealed significantly decreased maximum erythema in Dugway Δdot/icm WCV-skin-tested animals compared to that of QVax®. These data provide insight into this unique bacterial strain and implicate its potential use as a mutated WCV candidate.

2.
Front Immunol ; 13: 894536, 2022.
Article in English | MEDLINE | ID: mdl-35784317

ABSTRACT

Delayed-type hypersensitivity (DTH) responses to microbial vaccines and related components are a major roadblock for widespread licensing of whole cell vaccines such as that of Q fever. Q fever is a zoonotic disease caused by the intracellular bacterium Coxiella burnetii. The only currently licensed vaccine, Q-Vax®, is a whole cell inactivated formulation that is associated with a potentially severe dermal post vaccination DTH response in previously sensitized individuals. To investigate the underlying immunologic mechanisms of this response and better represent the early-phase DTH response observed in humans, a murine sensitization and skin testing model was developed and employed. Female C57Bl/6J mice displayed the most robust early-phase DTH responses following sensitization and elicitation compared to their male counterparts and other mouse strains. Immunologic responses were measured within the skin, draining lymph nodes, and serum following both sensitization and elicitation with Q fever whole cell vaccines. Local immunologic responses in the dermis were characterized by inflammation primarily involving neutrophils, macrophages, and T cells. Secondary lymphoid organ profiling revealed distinct immunological signatures following both sensitization and elicitation with a sex-based dichotomy in T cell phenotypes and antigen presenting cell numbers. Beyond providing a post-Q fever vaccination DTH model that recapitulates early-phase DTH events, these data suggest that sex is a primary factor influencing the magnitude and composition of the ensuing response.


Subject(s)
Coxiella burnetii , Q Fever , Animals , Bacterial Vaccines , Female , Male , Mice , Sex Characteristics , Vaccination
3.
Front Cell Infect Microbiol ; 12: 828784, 2022.
Article in English | MEDLINE | ID: mdl-35223553

ABSTRACT

Coxiella burnetii is a zoonotic pathogen responsible for the human disease Q fever. While an inactivated whole cell vaccine exists for this disease, its widespread use is precluded by a post vaccination hypersensitivity response. Efforts for the development of an improved Q fever vaccine are intricately connected to the availability of appropriate animal models of human disease. Accordingly, small mammals and non-human primates have been utilized for vaccine-challenge and post vaccination hypersensitivity modeling. Here, we review the animal models historically utilized in Q fever vaccine development, describe recent advances in this area, discuss the limitations and strengths of these models, and summarize the needs and criteria for future modeling efforts. In summary, while many useful models for Q fever vaccine development exist, there remains room for growth and expansion of these models which will in turn increase our understanding of C. burnetii host interactions.


Subject(s)
Coxiella burnetii , Q Fever , Animals , Bacterial Vaccines , Mammals , Models, Animal , Q Fever/prevention & control , Vaccine Development
4.
Pathogens ; 10(10)2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34684172

ABSTRACT

Q fever is a zoonotic disease caused by the intracellular pathogen Coxiella burnetii. This disease typically manifests as a self-limiting, febrile illness known as acute Q fever. Due to the aerosol transmissibility, environmental persistence, and infectivity of C. burnetii, this pathogen is a notable bioterrorism threat. Despite extensive efforts to develop next-generation human Q fever vaccines, only one vaccine, Q-Vax®, is commercially available. Q-Vax® is a phase I whole-cell vaccine, and its licensed use is limited to Australia, presumably due to the potential for a post-vaccination hypersensitivity response. Pre-clinical Q fever vaccine development is a major area of interest, and diverse approaches have been undertaken to develop an improved Q fever vaccine. Following a brief history of Q fever vaccine development, current approaches will be discussed along with future considerations for an improved Q fever vaccine.

5.
Genes (Basel) ; 8(1)2016 Dec 27.
Article in English | MEDLINE | ID: mdl-28035981

ABSTRACT

Toluene diisocyanate (TDI) is a potent low molecular weight chemical sensitizer and a leading cause of chemical-induced occupational asthma. The regulatory potential of microRNAs (miRNAs) has been recognized in a variety of disease states, including allergic disease; however, the roles of miRNAs in chemical sensitization are largely unknown. In a previous work, increased expression of multiple miRNAs during TDI sensitization was observed and several putative mRNA targets identified for these miRNAs were directly related to regulatory T-cell (Treg) differentiation and function including Foxp3 and Runx3. In this work, we show that miR-210 expression is increased in the mouse draining lymph node (dLN) and Treg subsets following dermal TDI sensitization. Alterations in dLN mRNA and protein expression of Treg related genes/putative miR-210 targets (foxp3, runx3, ctla4, and cd25) were observed at multiple time points following TDI exposure and in ex vivo systems. A Treg suppression assay, including a miR-210 mimic, was utilized to investigate the suppressive ability of Tregs. Cells derived from TDI sensitized mice treated with miR-210 mimic had less expression of miR-210 compared to the acetone control suggesting other factors, such as additional miRNAs, might be involved in the regulation of the functional capabilities of these cells. These novel findings indicate that miR-210 may have an inhibitory role in Treg function during TDI sensitization. Because the functional roles of miRNAs have not been previously elucidated in a model of chemical sensitization, these data contribute to the understanding of the potential immunologic mechanisms of chemical induced allergic disease.

6.
Toxicol Sci ; 152(1): 85-98, 2016 07.
Article in English | MEDLINE | ID: mdl-27103660

ABSTRACT

Toluene diisocyanate (TDI) is a leading cause of chemical-induced occupational asthma which impacts workers in a variety of industries worldwide. Recently, the robust regulatory potential of regulatory T cells (Tregs) has become apparent, including their functional role in the regulation of allergic disease; however, their function in TDI-induced sensitization has not been explored. To elucidate the kinetics, phenotype, and function of Tregs during TDI sensitization, BALB/c mice were dermally exposed (on each ear) to a single application of TDI (0.5-4% v/v) or acetone vehicle and endpoints were evaluated via RT-PCR and flow cytometry. The draining lymph node (dLN) Treg population expanded significantly 4, 7, and 9 days after single 4% TDI exposure. This population was identified using a variety of surface and intracellular markers and was found to be phenotypically heterogeneous based on increased expression of markers including CD103, CCR6, CTLA4, ICOS, and Neuropilin-1 during TDI sensitization. Tregs isolated from TDI-sensitized mice were significantly more suppressive compared with their control counterparts, further supporting a functional role for Tregs during TDI sensitization. Last, Tregs were depleted prior to TDI sensitization and an intensified sensitization response was observed. Collectively, these data indicate that Tregs exhibit a functional role during TDI sensitization. Because the role of Tregs in TDI sensitization has not been previously elucidated, these data contribute to the understanding of the immunologic mechanisms of chemical induced allergic disease.


Subject(s)
Cell Proliferation , Dermatitis, Allergic Contact/immunology , Lymphocyte Activation , Skin/immunology , T-Lymphocytes, Regulatory/immunology , Toluene 2,4-Diisocyanate , Animals , Antigens, CD/immunology , Antigens, CD/metabolism , CTLA-4 Antigen/immunology , CTLA-4 Antigen/metabolism , Cells, Cultured , Dermatitis, Allergic Contact/metabolism , Disease Models, Animal , Female , Inducible T-Cell Co-Stimulator Protein/immunology , Inducible T-Cell Co-Stimulator Protein/metabolism , Integrin alpha Chains/immunology , Integrin alpha Chains/metabolism , Kinetics , Mice, Inbred BALB C , Neuropilin-1/immunology , Neuropilin-1/metabolism , Phenotype , Receptors, CCR6/immunology , Receptors, CCR6/metabolism , Skin/metabolism , T-Lymphocytes, Regulatory/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...