Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Brain ; 147(5): 1726-1739, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38462589

ABSTRACT

Progressive neuronal loss is a hallmark feature distinguishing neurodegenerative diseases from normal ageing. However, the underlying mechanisms remain unknown. Extracellular K+ homeostasis is a potential mediator of neuronal injury as K+ elevations increase excitatory activity. The dysregulation of extracellular K+ and potassium channel expressions during neurodegeneration could contribute to this distinction. Here we measured the cortical extracellular K+ concentration ([K+]e) in awake wild-type mice as well as murine models of neurodegeneration using K+-sensitive microelectrodes. Unexpectedly, aged wild-type mice exhibited significantly lower cortical [K+]e than young mice. In contrast, cortical [K+]e was consistently elevated in Alzheimer's disease (APP/PS1), amyotrophic lateral sclerosis (ALS) (SOD1G93A) and Huntington's disease (R6/2) models. Cortical resting [K+]e correlated inversely with neuronal density and the [K+]e buffering rate but correlated positively with the predicted neuronal firing rate. Screening of astrocyte-selective genomic datasets revealed a number of potassium channel genes that were downregulated in these disease models but not in normal ageing. In particular, the inwardly rectifying potassium channel Kcnj10 was downregulated in ALS and Huntington's disease models but not in normal ageing, while Fxyd1 and Slc1a3, each of which acts as a negative regulator of potassium uptake, were each upregulated by astrocytes in both Alzheimer's disease and ALS models. Chronic elevation of [K+]e in response to changes in gene expression and the attendant neuronal hyperexcitability may drive the neuronal loss characteristic of these neurodegenerative diseases. These observations suggest that the dysregulation of extracellular K+ homeostasis in a number of neurodegenerative diseases could be due to aberrant astrocytic K+ buffering and as such, highlight a fundamental role for glial dysfunction in neurodegeneration.


Subject(s)
Aging , Neurodegenerative Diseases , Potassium , Animals , Potassium/metabolism , Aging/metabolism , Mice , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Mice, Transgenic , Potassium Channels, Inwardly Rectifying/metabolism , Potassium Channels, Inwardly Rectifying/genetics , Male , Mice, Inbred C57BL , Neurons/metabolism , Humans , Disease Models, Animal , Cerebral Cortex/metabolism , Huntington Disease/metabolism , Huntington Disease/genetics , Female , Astrocytes/metabolism
2.
Neuron ; 100(5): 1066-1082.e6, 2018 12 05.
Article in English | MEDLINE | ID: mdl-30482691

ABSTRACT

In the developing brain, heightened plasticity during the critical period enables the proper formation of neural circuits. Here, we identify the "navigator" neurons, a group of perinatally born olfactory sensory neurons, as playing an essential role in establishing the olfactory map during the critical period. The navigator axons project circuitously in the olfactory bulb and traverse multiple glomeruli before terminating in perspective glomeruli. These neurons undergo a phase of exuberant axon growth and exhibit a shortened lifespan. Single-cell transcriptome analyses reveal distinct molecular signatures for the navigators. Extending their lifespan prolongs the period of exuberant growth and perturbs axon convergence. Conversely, a genetic ablation experiment indicates that, despite postnatal neurogenesis, only the navigators are endowed with the ability to establish a convergent map. The presence and the proper removal of the navigator neurons are both required to establish tight axon convergence into the glomeruli.


Subject(s)
Axons/physiology , Olfactory Bulb/growth & development , Olfactory Receptor Neurons/physiology , Animals , Female , HEK293 Cells , Humans , Male , Mice, Transgenic , Neurogenesis , Olfactory Bulb/metabolism , Olfactory Pathways/growth & development , Olfactory Pathways/metabolism , Olfactory Receptor Neurons/metabolism , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...