Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 119(46): e2212406119, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36346846

ABSTRACT

Defense against ultraviolet (UV) radiation exposure is essential for survival, especially in high-elevation species. Although some specific genes involved in UV response have been reported, the full view of UV defense mechanisms remains largely unexplored. Herein, we used integrated approaches to analyze UV responses in the highest-elevation frog, Nanorana parkeri. We show less damage and more efficient antioxidant activity in skin of this frog than those of its lower-elevation relatives after UV exposure. We also reveal genes related to UV defense and a corresponding temporal expression pattern in N. parkeri. Genomic and metabolomic analysis along with large-scale transcriptomic profiling revealed a time-dependent coordinated defense mechanism in N. parkeri. We also identified several microRNAs that play important regulatory roles, especially in decreasing the expression levels of cell cycle genes. Moreover, multiple defense genes (i.e., TYR for melanogenesis) exhibit positive selection with function-enhancing substitutions. Thus, both expression shifts and gene mutations contribute to UV adaptation in N. parkeri. Our work demonstrates a genetic framework for evolution of UV defense in a natural environment.


Subject(s)
Anura , Ultraviolet Rays , Animals , Anura/genetics , Skin , Gene Expression Profiling , Antioxidants
2.
Acta Pharm Sin B ; 12(5): 2268-2279, 2022 May.
Article in English | MEDLINE | ID: mdl-35646538

ABSTRACT

Unlike healthy, non-transformed cells, the proteostasis network of cancer cells is taxed to produce proteins involved in tumor development. Cancer cells have a higher dependency on molecular chaperones to maintain proteostasis. The chaperonin T-complex protein ring complex (TRiC) contains eight paralogous subunits (CCT1-8), and assists the folding of as many as 10% of cytosolic proteome. TRiC is essential for the progression of some cancers, but the roles of TRiC subunits in osteosarcoma remain to be explored. Here, we show that CCT4/TRiC is significantly correlated in human osteosarcoma, and plays a critical role in osteosarcoma cell survival. We identify a compound anticarin-ß that can specifically bind to and inhibit CCT4. Anticarin-ß shows higher selectivity in cancer cells than in normal cells. Mechanistically, anticarin-ß potently impedes CCT4-mediated STAT3 maturation. Anticarin-ß displays remarkable antitumor efficacy in orthotopic and patient-derived xenograft models of osteosarcoma. Collectively, our data uncover a key role of CCT4 in osteosarcoma, and propose a promising treatment strategy for osteosarcoma by disrupting CCT4 and proteostasis.

3.
Cell Mol Life Sci ; 79(5): 240, 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35416530

ABSTRACT

Ischemic stroke is a leading cause of death and disability worldwide. Increasing evidence indicates that ischemic stroke is a thromboinflammatory disease in which the contact-kinin pathway has a central role by activating pro-coagulant and pro-inflammatory processes. The blocking of distinct members of the contact-kinin pathway is a promising strategy to control ischemic stroke. Here, a plasma kallikrein and active FXII (FXIIa) inhibitor (sylvestin, contained 43 amino acids, with a molecular weight of 4790.4 Da) was first identified from forest leeches (Haemadipsa sylvestris). Testing revealed that sylvestin prolonged activated partial thromboplastin time without affecting prothrombin time. Thromboelastography and clot retraction assays further showed that it extended clotting time in whole blood and inhibited clot retraction in platelet-rich plasma. In addition, sylvestin prevented thrombosis in vivo in FeCl3-induced arterial and carrageenan-induced tail thrombosis models. The potential role of sylvestin in ischemic stroke was evaluated by transient and permanent middle cerebral artery occlusion models. Sylvestin administration profoundly protected mice from ischemic stroke by counteracting intracerebral thrombosis and inflammation. Importantly, sylvestin showed no signs of bleeding tendency. The present study identifies sylvestin is a promising contact-kinin pathway inhibitor that can proffer profound protection from ischemic stroke without increased risk of bleeding.


Subject(s)
Ischemic Stroke , Stroke , Thrombosis , Animals , Inflammation/drug therapy , Inflammation/prevention & control , Kinins , Mice , Stroke/drug therapy , Thromboinflammation , Thrombosis/drug therapy
4.
Front Immunol ; 12: 775678, 2021.
Article in English | MEDLINE | ID: mdl-34899734

ABSTRACT

As said by former United Nations Secretary-General Kofi Annan, "Snakebite is the most important tropical disease you've never heard of." Listed as a priority neglected tropical disease by the World Health Organization, snakebite envenoming (SBE) kills in excess of 125,000 people per year. However, due to the complexity and overlap of snake venom compositions, few reliable venom diagnostic methods for genus-/species-specific identification, which is crucial for successful SBE therapy, are available. Here, we develop a strategy to select and prepare genus-specific snake venom antibodies, which allows rapid and efficient clinical diagnosis of snakebite. Multi-omics approaches are used to choose candidate antigens from snake venoms and identify genus-specific antigenic epitope peptide fragments (GSAEPs) with ideal immunogenicity, specificity, and spatial accessibility. Double-antibody sandwich ELISA kit was established by matching a polyclonal antibody against a natural antigen and a monoclonal antibody that was prepared by natural protein as antigen and can specifically target the GSAEPs. The kit shows the ability to accurately identify venoms from similar genera of Trimeresurus and Protobothrops with a detection limit of 6.25 ng/ml on the snake venoms and a little cross-reaction, thus proving high feasibility and applicability.


Subject(s)
Antivenins/immunology , Enzyme-Linked Immunosorbent Assay , Snake Bites/diagnosis , Snake Bites/immunology , Snake Venoms/immunology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/immunology , Antivenins/chemistry , Enzyme-Linked Immunosorbent Assay/methods , Epitope Mapping , Epitopes/chemistry , Epitopes/immunology , Humans , Models, Molecular , Peptides/chemistry , Peptides/immunology , Protein Conformation , Sensitivity and Specificity , Snake Venoms/chemistry , Species Specificity , Structure-Activity Relationship
5.
Arch Toxicol ; 95(11): 3589-3599, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34519865

ABSTRACT

Venomous snakebites cause clinical manifestations that range from local to systemic and are considered a significant global health challenge. Persistent or refractory thrombocytopenia has been frequently reported in snakebite patients, especially in cases caused by viperidae snakes. Viper envenomation-induced thrombocytopenia may persist in the absence of significant consumption coagulopathy even after the antivenom treatment, yet the mechanism remains largely unknown. Our study aims to investigate the mechanism and discover novel therapeutic targets for coagulopathy-independent thrombocytopenia caused by viper envenomation. Here we found that patients bitten by Protobothrops mucrosquamatus and Trimeresurus stejnegeri, rather than Naja. atra may develop antivenom-resistant and coagulopathy-independent thrombocytopenia. Crude venoms and the derived C-type lectin-like proteins from these vipers significantly increased platelet surface expression of neuraminidase and platelet desialylation, therefore led to platelet ingestion by both macrophages and hepatocytes in vitro, and drastically decreased peripheral platelet counts in vivo. Our study is the first to demonstrate that desialylation-mediated platelet clearance is a novel mechanism of viper envenomation-induced refractory thrombocytopenia and C-type lectin-like proteins derived from the viper venoms contribute to snake venom-induced thrombocytopenia. The results of this study suggest the inhibition of platelet desialylation as a novel therapeutic strategy against viper venom-induced refractory thrombocytopenia.


Subject(s)
Hepatocytes/drug effects , Macrophages/drug effects , Thrombocytopenia/etiology , Viper Venoms/toxicity , Animals , Antivenins/pharmacology , Blood Platelets/pathology , Female , Humans , Male , Mice, Inbred C57BL , Neuraminidase/metabolism , Snake Bites/complications , Thrombocytopenia/pathology , Viper Venoms/chemistry , Viperidae
6.
Chin J Nat Med ; 19(7): 540-544, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34247778

ABSTRACT

A large number of protease inhibitors have been found from leeches, which are essential in various physiological and biological processes. In the curret study, a novel elastase inhibitor was purified and characterized from the leech of Hirudinaria manillensis, which was named HMEI-A. Primary structure analysis showed that HMEI-A belonged to a new family of proteins. HMEI-A exerted inhibitory effects on elastase and showed potent abilities to inhibit elastase with an inhibition constant (Ki) of 1.69 × 10-8 mol·L-1. Further study showed that HMEI-A inhibited the formation of neutrophil extracellular trap (NET). These results suggested that HMEI-A from the leech of H. manillensis is a novel elastase inhibitor which can suppress NET formation. It may play a significant role in blood-sucking of leeches and is a potential candidate as an anti-inflammatory agent.


Subject(s)
Leeches , Pancreatic Elastase/antagonists & inhibitors , Protease Inhibitors/pharmacology , Amino Acid Sequence , Animals , Leeches/chemistry , Proteins
7.
Am J Trop Med Hyg ; 104(5): 1870-1876, 2021 04 05.
Article in English | MEDLINE | ID: mdl-33819174

ABSTRACT

Envenomation and death resulting from snakebites represent a significant public health problem worldwide, particularly in tropical and subtropical regions. The WHO has defined snakebite as a neglected tropical health concern. Bites from Macrovipera lebetina obtusa usually cause life-threatening systemic hemodynamic disturbances, reduced functionality of the kidneys, and other serious symptoms, including hypotension shock, edema, and tissue necrosis, at the bite site. Herein, we highlight five cases of M. l. obtusa envenomation that presented with wide-ranging manifestations. Many recovered cases were left with long-term musculoskeletal disabilities. In a particular case, a 15-year-old male patient was envenomed in his palm by an 80-cm M. l. obtusa. Within 12 hours, swelling extended to near the shoulder. Fasciotomy was performed on the forearm and part of the upper arm of this patient. Symptoms of severe localized pain and swelling, dizziness, weakness, low blood pressure, and itching around the bite area were documented. The patient remained in the hospital for 13 days.


Subject(s)
Antivenins/therapeutic use , Edema/drug therapy , Hypotension/drug therapy , Necrosis/drug therapy , Snake Bites/drug therapy , Viper Venoms/toxicity , Viperidae/physiology , Adolescent , Adult , Animals , Child , Edema/diagnosis , Edema/pathology , Edema/surgery , Female , Histamine Antagonists/therapeutic use , Humans , Hypotension/diagnosis , Hypotension/pathology , Hypotension/surgery , Iran , Loratadine/therapeutic use , Male , Necrosis/diagnosis , Necrosis/pathology , Necrosis/surgery , Snake Bites/diagnosis , Snake Bites/pathology , Snake Bites/surgery , Viper Venoms/administration & dosage
8.
Cell Res ; 31(1): 17-24, 2021 01.
Article in English | MEDLINE | ID: mdl-33262453

ABSTRACT

Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic worldwide. Currently, however, no effective drug or vaccine is available to treat or prevent the resulting coronavirus disease 2019 (COVID-19). Here, we report our discovery of a promising anti-COVID-19 drug candidate, the lipoglycopeptide antibiotic dalbavancin, based on virtual screening of the FDA-approved peptide drug library combined with in vitro and in vivo functional antiviral assays. Our results showed that dalbavancin directly binds to human angiotensin-converting enzyme 2 (ACE2) with high affinity, thereby blocking its interaction with the SARS-CoV-2 spike protein. Furthermore, dalbavancin effectively prevents SARS-CoV-2 replication in Vero E6 cells with an EC50 of ~12 nM. In both mouse and rhesus macaque models, viral replication and histopathological injuries caused by SARS-CoV-2 infection are significantly inhibited by dalbavancin administration. Given its high safety and long plasma half-life (8-10 days) shown in previous clinical trials, our data indicate that dalbavancin is a promising anti-COVID-19 drug candidate.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Teicoplanin/analogs & derivatives , Animals , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Caco-2 Cells , Chlorocebus aethiops , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Protein Binding/drug effects , Teicoplanin/pharmacokinetics , Teicoplanin/pharmacology , Vero Cells
9.
Toxins (Basel) ; 12(12)2020 11 27.
Article in English | MEDLINE | ID: mdl-33260875

ABSTRACT

Envenomation by viperid snakes may lead to severe bleeding, consumption coagulopathy, and thrombotic microangiopathy symptoms. The exact etiology or toxins responsible for thrombotic microangiopathy symptoms after snake envenomation remain obscure. Snake C-type lectin-like proteins (snaclecs) are one of the main non-enzymatic protein constituents in viper venoms, of which a majority are considered as modulators of thrombosis and hemostasis. In this study, we demonstrated that two snaclecs (mucetin and stejnulxin), isolated and identified from Protobothrops mucrosquamatus and Trimeresurus stejnegeri venoms, directly induced platelet degranulation and clot-retraction in vitro, and microvascular thrombosis has been confirmed in various organs in vivo. These snaclecs reduced cerebral blood flow and impaired motor balance and spatial memories in mice, which partially represent the thrombotic microangiopathy symptoms in some snakebite patients. The functional blocking of these snaclecs with antibodies alleviated the viper venom induced platelet activation and thrombotic microangiopathy-like symptoms. Understanding the pathophysiology of thrombotic microangiopathy associated with snake envenoming may lead to emerging therapeutic strategies.


Subject(s)
Antivenins/pharmacology , Brain Ischemia/etiology , Lectins, C-Type/physiology , Snake Bites/complications , Thrombotic Microangiopathies/etiology , Animals , Cell Degranulation/drug effects , Clot Retraction/drug effects , Female , Humans , Lectins, C-Type/isolation & purification , Male , Mice , Mice, Inbred BALB C , Platelet Activation/drug effects , Thrombotic Microangiopathies/pathology , Viper Venoms/pharmacology , Viperidae
10.
Circ Res ; 127(5): 651-663, 2020 08 14.
Article in English | MEDLINE | ID: mdl-32450779

ABSTRACT

RATIONALE: Epidemiological studies have identified an associate between iron deficiency (ID) and the use of oral contraceptives (CC) and ischemic stroke (IS). To date, however, the underlying mechanism remains poorly understood. Both ID and CC have been demonstrated to upregulate the level and iron-binding ability of Tf (transferrin), with our recent study showing that this upregulation can induce hypercoagulability by potentiating FXIIa/thrombin and blocking antithrombin-coagulation proteases interactions. OBJECTIVE: To investigate whether Tf mediates IS associated with ID or CC and the underlying mechanisms. METHODS AND RESULTS: Tf levels were assayed in the plasma of IS patients with a history of ID anemia, ID anemia patients, venous thromboembolism patients using CC, and ID mice, and in the cerebrospinal fluid of some IS patients. Effects of ID and estrogen administration on Tf expression and coagulability and the underlying mechanisms were studied in vivo and in vitro. High levels of Tf and Tf-thrombin/FXIIa complexes were found in patients and ID mice. Both ID and estrogen upregulated Tf through hypoxia and estrogen response elements located in the Tf gene enhancer and promoter regions, respectively. In addition, ID, administration of exogenous Tf or estrogen, and Tf overexpression promoted platelet-based thrombin generation and hypercoagulability and thus aggravated IS. In contrast, anti-Tf antibodies, Tf knockdown, and peptide inhibitors of Tf-thrombin/FXIIa interaction exerted anti-IS effects in vivo. CONCLUSIONS: Our findings revealed that certain factors (ie, ID and CC) upregulating Tf are risk factors of thromboembolic diseases decipher a previously unrecognized mechanistic association among ID, CC, and IS and provide a novel strategy for the development of anti-IS medicine by interfering with Tf-thrombin/FXIIa interactions.


Subject(s)
Anemia, Iron-Deficiency/complications , Blood Coagulation , Contraceptives, Oral, Hormonal/adverse effects , Estrogens/toxicity , Ischemic Stroke/etiology , Thrombophilia/etiology , Transferrin/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Anemia, Iron-Deficiency/blood , Anemia, Iron-Deficiency/diagnosis , Animals , Biomarkers/blood , Case-Control Studies , Cell Line , Disease Models, Animal , Factor XIIa/metabolism , Female , Humans , Ischemic Stroke/blood , Ischemic Stroke/diagnosis , Liver/drug effects , Liver/metabolism , Male , Mice, Inbred C57BL , Middle Aged , Prospective Studies , Risk Assessment , Risk Factors , Thrombin/metabolism , Thrombophilia/blood , Thrombophilia/diagnosis , Up-Regulation , Young Adult
11.
Toxins (Basel) ; 12(2)2020 02 06.
Article in English | MEDLINE | ID: mdl-32041262

ABSTRACT

Snake venoms contain components selected to immobilize prey. The venoms from Elapidae mainly contain neurotoxins, which are critical for rapid prey paralysis, while the venoms from Viperidae and Colubridae may contain fewer neurotoxins but are likely to induce circulatory disorders. Here, we show that the venoms from Protobothrops mucrosquamatus and Trimeresurus stejnegeri are comparable to those of Naja atra in prey immobilization. Further studies indicate that snake C-type lectin-like proteins (snaclecs), which are one of the main nonenzymatic components in viper venoms, are responsible for rapid prey immobilization. Snaclecs (mucetin and stejnulxin) from the venoms of P. mucrosquamatus and T. stejnegeri induce the aggregation of both mammalian platelets and avian thrombocytes, leading to acute cerebral ischemia, and reduced animal locomotor activity and exploration in the open field test. Viper venoms in the absence of snaclecs fail to aggregate platelets and thrombocytes, and thus show an attenuated ability to cause cerebral ischemia and immobilization of their prey. This work provides novel insights into the prey immobilization mechanism of Viperidae snakes and the understanding of viper envenomation-induced cerebral infarction.


Subject(s)
Brain Ischemia/chemically induced , Lectins, C-Type/physiology , Motor Activity/drug effects , Platelet Activation/drug effects , Viper Venoms/chemistry , Animals , Cerebrovascular Circulation/drug effects , Female , Galliformes/blood , Lectins, C-Type/isolation & purification , Mice, Inbred BALB C , Viperidae
12.
Front Vet Sci ; 7: 615915, 2020.
Article in English | MEDLINE | ID: mdl-33490139

ABSTRACT

From a survival perspective, it is hypothesized that leech saliva exhibits certain physiological effects to ensure fast blood-feeding, including analgesia, anesthesia, and anti-inflammation to stay undetected by the host and vasodilatation and anti-hemostasis to ensure a steady, rapid, and sustained blood flow to the feeding site. Many anti-hemostatic compounds have been identified in leech saliva, such as hirudin, calin, and bdellin A. However, no specific substance with direct vasodilatory and anti-inflammatory function has been reported from forest leech saliva. Herein, using activity-guided analysis, prostaglandin E1 (PGE1) was identified for the first time as an efficient molecular tool for forest leech blood sucking. The structure of PGE1 was analyzed by nuclear magnetic resonance spectroscopy and high-resolution electrospray ionization mass spectroscopy. PGE1 was found to be primarily distributed in the leech salivary gland (1228.36 ng/g body weight). We also analyzed how forest leech PGE1 affects platelet aggregation, skin vascular permeability, bleeding time, and pain. Results indicated that PGE1 efficiently inhibited platelet aggregation induced by adenosine diphosphate (ADP) (5 µM) with an IC50 of 21.81 ± 2.24 nM. At doses of 10, 100 nM, and 1 µM, PGE1 increased vascular permeability by 1.18, 5.8, and 9.2 times. It also prolonged bleeding time in a concentration-independent manner. In the formalin-induced mouse paw pain model, PGE1 suppressed acute pain. To the best of our knowledge, this is the first report on PGE1 in invertebrates. The functions of PGE1, such as vasodilation, platelet aggregation inhibition, anti-inflammation, and pain alleviation, may facilitate the ingestion of host blood by leeches.

13.
J Ethnopharmacol ; 244: 112137, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31381955

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Veratrum taliense is traditionally used TCMs in Yunnan province of China for pain and inflammation. Previous research and clinical applications have shown that V. taliense had significant analgesic activity. Jevine-type alkaloids were shown to be one of the anti-inflammatory and analgesic agents from V. taliense. However, other types of compounds from V. taliense related to its traditional use remains unknown. AIM OF THE STUDY: To identify veratramine-type steroidal alkaloids with analgesic effects from the roots and rhizomes of V. taliense. MATERIALS AND METHODS: Compounds were isolated from the roots and rhizomes of V. taliense by chromatographic separation. Their structures were elucidated based on UV, IR, NMR and MS spectra data. Analgesic activity was assessed with acetic acid-induced writhing in mice model. RESULTS: Seven new veratramine-type alkaloids were isolated from the roots and rhizomes of V. taliense. They all exhibited significant analgesic activity, of which alkaloids 1 and 4 were more potent antalgic than the well-known analgesic drug, pethidine. CONCLUSIONS: The veratramine-type alkaloids from V. taliense may serve as new leads for the discovery of analgesic drugs.


Subject(s)
Alkaloids/therapeutic use , Analgesics/therapeutic use , Pain/drug therapy , Veratrum , Acetic Acid , Alkaloids/analysis , Analgesics/chemistry , Animals , Female , Male , Mice, Inbred ICR , Pain/chemically induced , Phytochemicals/analysis , Phytochemicals/therapeutic use , Plant Roots
14.
Zool Res ; 40(3): 205-210, 2019 May 18.
Article in English | MEDLINE | ID: mdl-31011131

ABSTRACT

Protease inhibitors have been reported rarely from the leech Hirudinaria manillensis. In this study, we purified a novel protease inhibitor (bdellin-HM-2) with anticoagulant properties from H. manillensis. With a molecular weight of 1.4x104, bdellin-HM-2 was also characterized with three intra-molecular disulfide bridges at the N-terminus and multiple HHXDD and HXDD motifs at the C-terminus. cDNA cloning revealed that the putative nucleotide-encoding protein of bdellin-HM-2 contained 132 amino acids and was encoded by a 399 bp open reading frame (ORF). Sequence alignment showed that bdellin-HM-2 shared similarity with the "non-classical" Kazal-type serine protease inhibitors, but had no inhibitory effect on trypsin, elastase, chymotrypsin, kallikrein, factor XIIa (FXIIa), factor XIa (FXIa), factor Xa (FXa), thrombin, or plasmin. Bdellin-HM-2 showed anticoagulant effects by prolonging the activated partial thromboplastin time (aPTT), indicating a role in enabling H. manillensis to obtain a blood meal from its host. Our results suggest that bdellin-HM-2 may play a crucial role in blood-sucking in this leech species and may be a potential candidate for the development of clinical anti-thrombotic drugs.


Subject(s)
Anticoagulants/metabolism , Leeches/metabolism , Amino Acid Sequence , Animals , Anticoagulants/chemistry , Base Sequence , DNA, Complementary , Partial Thromboplastin Time , Prothrombin Time
15.
Science ; 362(6418): 1052-1055, 2018 11 30.
Article in English | MEDLINE | ID: mdl-30498127

ABSTRACT

Lactation is a mammalian attribute, and the few known nonmammal examples have distinctly different modalities. We document here milk provisioning in a jumping spider, which compares functionally and behaviorally to lactation in mammals. The spiderlings ingest nutritious milk droplets secreted from the mother's epigastric furrow until the subadult stage. Milk is indispensable for offspring survival in the early stages and complements their foraging in later stages. Maternal care, as for some long-lived vertebrates, continues after the offspring reach maturity. Furthermore, a female-biased adult sex ratio is acquired only when the mother is present. These findings demonstrate that mammal-like milk provisioning and parental care for sexually mature offspring have also evolved in invertebrates, encouraging a reevaluation of their occurrence across the animal kingdom, especially in invertebrates.


Subject(s)
Lactation , Milk/physiology , Spiders/physiology , Animals , Female
16.
Front Pharmacol ; 9: 186, 2018.
Article in English | MEDLINE | ID: mdl-29559913

ABSTRACT

Considering blood-sucking habits of leeches from surviving strategy of view, it can be hypothesized that leech saliva has analgesia or anesthesia functions for leeches to stay undetected by the host. However, no specific substance with analgesic function has been reported from leech saliva although clinical applications strongly indicated that leech therapy produces a strong and long lasting pain-reducing effect. Herein, a novel family of small peptides (HSTXs) including 11 members which show low similarity with known peptides was identified from salivary glands of the leech Haemadipsa sylvestris. A typical HSTX is composed of 22-25 amino acid residues including four half-cysteines, forming two intra-molecular disulfide bridges, and an amidated C-terminus. HSTX-I exerts significant analgesic function by specifically inhibiting voltage-gated sodium (NaV) channels (NaV1.8 and NaV1.9) which contribute to action potential electrogenesis in neurons and potential targets to develop analgesics. This study reveals that sodium channel inhibitors are analgesic substances in the leech. HSTXs are excellent candidates or templates for development of analgesics.

17.
Toxins (Basel) ; 8(8)2016 07 23.
Article in English | MEDLINE | ID: mdl-27455325

ABSTRACT

Kazal-type serine proteinase inhibitors are found in a large number of living organisms and play crucial roles in various biological and physiological processes. Although some Kazal-type serine protease inhibitors have been identified in leeches, none has been reported from Hirudinaria manillensis, which is a medically important leech. In this study, a novel Kazal-type trypsin inhibitor was isolated from leech H. manillensis, purified and named as bdellin-HM based on the sequence similarity with bdellin-KL and bdellin B-3. Structural analysis revealed that bdellin-HM was a 17,432.8 Da protein and comprised of 149 amino acid residues with six cysteines forming three intra-molecular disulfide bonds. Bdellin-HM showed similarity with the Kazal-type domain and may belong to the group of "non-classical" Kazal inhibitors according to its Cys(I)-Cys(II) disulfide bridge position. Bdellin-HM had no inhibitory effect on elastase, chymotrypsin, kallikrein, Factor (F) XIIa, FXIa, FXa, thrombin and plasmin, but it showed a potent ability to inhibit trypsin with an inhibition constant (Ki) of (8.12 ± 0.18) × 10(-9) M. These results suggest that bdellin-HM from the leech of H. manillensis plays a potent and specific inhibitory role towards trypsin.


Subject(s)
Leeches/chemistry , Organic Chemicals/isolation & purification , Trypsin Inhibitors/isolation & purification , Amino Acid Sequence , Animals , Molecular Weight , Organic Chemicals/chemistry , Organic Chemicals/pharmacology , Protein Domains , Structure-Activity Relationship , Trypsin/metabolism , Trypsin Inhibitors/chemistry , Trypsin Inhibitors/pharmacology
18.
Toxins (Basel) ; 8(1)2015 Dec 30.
Article in English | MEDLINE | ID: mdl-26729167

ABSTRACT

Several species of the genus Veratrum that produce steroid alkaloids are commonly used to treat pain and hypertension in China and Europe. However, Veratrum alkaloids (VAs) induce serious cardiovascular toxicity. In China, Veratrum treatment often leads to many side effects and even causes the death of patients, but the pathophysiological mechanisms under these adverse effects are not clear. Here, two solanidine-type VAs (isorubijervine and rubijervine) isolated from Veratrum taliense exhibited strong cardiovascular toxicity. A pathophysiological study indicated that these VAs blocked sodium channels Na(V)1.3-1.5 and exhibited the strongest ability to inhibit Na(V)1.5, which is specifically expressed in cardiac tissue and plays an essential role in cardiac physiological function. This result reveals that VAs exert their cardiovascular toxicity via the Na(V)1.5 channel. The effects of VAs on Na(V)1.3 and Na(V)1.4 may be related to their analgesic effect and skeletal muscle toxicity, respectively.


Subject(s)
Alkaloids/toxicity , Heart/drug effects , NAV1.5 Voltage-Gated Sodium Channel/physiology , Veratrum , Animals , Blood Pressure/drug effects , Electrocardiography , Heart/physiology , Heart Rate/drug effects , Humans , Lethal Dose 50 , Macaca , Male , Mice , NAV1.3 Voltage-Gated Sodium Channel/physiology , NAV1.4 Voltage-Gated Sodium Channel/physiology , Plant Roots , Rats
19.
Mol Cell Proteomics ; 12(7): 1818-28, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23481662

ABSTRACT

The most important indoor allergens for humans are house dust mites (HDM). Fourteen Dermatophagoides farinae allergens (Der f 1-3, 6, 7, 10, 11, 13-18, and 22) are reported although more than 30 allergens have been estimated in D. farinae. Seventeen allergens belonging to 12 different groups were identified by a procedure of proteomics combined with two-dimensional immunoblotting from D. farina extracts. Their sequences were determined by Edman degradation, mass spectrometry analysis, and cDNA cloning. Their allergenicities were assayed by enzyme-linked immunosorbent assay inhibition tests, immunoblots, basophil activation test, and skin prick tests. Eight of them are the first report as D. farinae allergens. The procedure of using a proteomic approach combined with a purely discovery approach using sera of patients with broad IgE reactivity profiles to mite allergens was an effective method to investigate a more complete repertoire of D. farinae allergens. The identification of eight new D. farinae allergens will be helpful for HDM allergy diagnosis and therapy, especially for patients without response for HDM major allergens. In addition, the current work significantly extendedthe repertoire of D. farinae allergens.


Subject(s)
Allergens/isolation & purification , Antigens, Dermatophagoides/isolation & purification , Adolescent , Adult , Allergens/immunology , Amino Acid Sequence , Antigens, Dermatophagoides/chemistry , Antigens, Dermatophagoides/immunology , Asthma/blood , Asthma/immunology , Child , Humans , Hypersensitivity/blood , Hypersensitivity/immunology , Immunoglobulin E/blood , Middle Aged , Molecular Sequence Data , Proteomics , Skin Tests , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...