Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Dairy Sci ; 102(3): 2275-2282, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30692015

ABSTRACT

Rumen cannulation is a widely employed technique in ruminant nutrition research. However, the gap between skin and rumen cannula can cause leakage of fermentation gases and influx of atmospheric air, which may adversely affect the anaerobic environment in the rumen. The present study was designed to investigate the effects of rumen cannulation on headspace gases, dissolved gases, fermentation end products, and methanogen community in the rumen of dairy cows. Eight Holstein cows were used in the experiment. Four cows were surgically fitted with rumen cannulas, whereas the other 4 intact cows were used as control. Rumen cannulation decreased gaseous hydrogen and methane concentrations, dissolved carbon dioxide concentration, and relative abundances of Methanosphaera, and increased the saturation factor of dissolved hydrogen and dissolved methane, dissolved methane concentration, volatile fatty acid concentration, 16S ribosomal RNA gene copies of methanogens, and Simpson index of methanogen community. In summary, rumen cannulation causes a reduction in headspace gaseous hydrogen and gaseous methane, which may not decrease dissolved gas concentrations due to an increase in saturation factors. Furthermore, rumen cannulation alters methanogen community with increased methanogen population and decreased relative abundances of Methanosphaera.


Subject(s)
Cattle/microbiology , Cattle/physiology , Gastrointestinal Microbiome/physiology , Methanomicrobiales/physiology , Rumen/microbiology , Rumen/physiology , Animals , Catheterization/veterinary , Dairying , Female , Gases/metabolism , Lactation , Methane/metabolism
2.
J Dairy Sci ; 101(11): 9789-9799, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30172398

ABSTRACT

Generation of ammonia from nitrate reduction is slower compared with urea hydrolysis and may be more efficiently incorporated into ruminal microbial protein. We hypothesized that nitrate supplementation could increase ammonia incorporation into microbial protein in the rumen compared with urea supplementation of a low-protein diet fed to lactating dairy cows. Eight multiparous Chinese Holstein dairy cows were used in a crossover design to investigate the effect of nitrate or an isonitrogenous urea inclusion in the basal low-protein diet on rumen fermentation, milk yield, and ruminal microbial community in dairy cows fed a low-protein diet in comparison with an isonitrogenous urea control. Eight lactating cows were blocked in 4 pairs according to days in milk, parity, and milk yield and allocated to urea (7.0 g urea/kg of dry matter of basal diet) or nitrate (14.6 g of NO3-/kg of dry matter of basal diet, supplemented as sodium nitrate) treatments, which were formulated on 75% of metabolizable protein requirements. Nitrate supplementation decreased ammonia concentration in the rumen liquids (-33.1%) and plasma (-30.6%) as well as methane emissions (-15.0%) and increased dissolved hydrogen concentration (102%), microbial N (22.8%), propionate molar percentage, milk yield, and 16S rRNA gene copies of Selenomonas ruminantium. Ruminal dissolved hydrogen was positively correlated with the molar proportion of propionate (r = 0.57), and negatively correlated with acetate-to-propionate ratio (r = -0.57) and estimated net metabolic hydrogen production relative to total VFA produced (r = -0.58). Nitrate reduction to ammonia redirected metabolic hydrogen away from methanogenesis, enhanced ammonia incorporation into rumen microbial protein, and shifted fermentation from acetate to propionate, along with increasing S. ruminantium 16S rRNA gene copies, likely leading to the increased milk yield.


Subject(s)
Ammonia/metabolism , Cattle/physiology , Diet, Protein-Restricted , Dietary Supplements , Methane/metabolism , Milk/metabolism , Nitrates/pharmacology , Animal Feed/analysis , Animals , Bacterial Proteins/metabolism , Cattle/microbiology , Diet/veterinary , Female , Fermentation , Fungal Proteins/metabolism , Hydrogen/metabolism , Lactation , Pregnancy , Protozoan Proteins/metabolism , Rumen/drug effects , Rumen/metabolism , Urea/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...