Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 35(5)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37879318

ABSTRACT

Achieving high sensitivity in gas sensors is crucial for the precise detection of toxic agents. However, this can be challenging as it requires gas sensors to possess both a high response signal and low electrical noise simultaneously, which seems controversial as it necessitates adopting semiconductors with different bandgaps. Herein, we demonstrate the superior sensitivity of 2D molybdenum disulfide (MoS2)/tellurium (Te) van der Waals heterostructure (vdWH) gas sensors fabricated by combining narrow-bandgap (Te) and wide-bandgap (MoS2) semiconductors. The as-fabricated MoS2/Te vdWH gas sensors exhibit excellent sensitivity that is unavailable for sensors based on its individual counterparts. The response toward 50 ppm NH3is improved by two and six times compared to the individual MoS2and Te gas sensors, respectively. In addition, a high signal-to-noise ratio of ∼350 and an ultralow limit of detection of ∼2 ppb are achieved. These results outperform most previously reported gas sensors due to the efficient modulation of the barrier height of the MoS2/Te p-n junction as well as the synergistic effect benefiting from the low electric noise of the narrow-bandgap Te and high response signal of the wide-bandgap MoS2. Our work provides an insight into utilizing vdWHs based on narrow-wide bandgap semiconductors for developing highly sensitive gas sensors.

SELECTION OF CITATIONS
SEARCH DETAIL
...