Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 6734, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36347889

ABSTRACT

High-speed flexible circuits are required in flexible systems to realize real-time information analysis or to construct wireless communication modules for emerging applications. Here, we present scaled carbon nanotube-based thin film transistors (CNT-TFTs) with channel lengths down to 450 nm on 2-µm-thick parylene substrates, achieving state-of-the-art performances of high on-state current (187.6 µA µm-1) and large transconductance (123.3 µS µm-1). Scaling behavior analyses reveal that the enhanced performance introduced by scaling is attributed to channel resistance reduction while the contact resistance (180 ± 50 kΩ per tube) remains unchanged, which is comparable to that achieved in devices on rigid substrates, indicating great potential in ultimate scaled flexible CNT-TFTs with high performance comparable to their counterparts on rigid substrates where contact resistance dominates the performance. Five-stage flexible ring oscillators are built to benchmark the speed of scaled devices, demonstrating a 281 ps stage delay at a low supply voltage of 2.6 V.

2.
Sci Adv ; 8(33): eabp8075, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35977018

ABSTRACT

Epidermal electronic systems that simultaneously provide physiological information acquisition, processing, and storage are in high demand for health care/clinical applications. However, these system-level demonstrations using flexible devices are still challenging because of obstacles in device performance, functional module construction, or integration scale. Here, on the basis of carbon nanotubes, we present an epidermal system that incorporates flexible sensors, sensor interface circuits, and an integrated flash memory array to collect physiological information from the human body surface; amplify weak biosignals by high-performance differential amplifiers (voltage gain of 27 decibels, common-mode rejection ratio of >43 decibels, and gain bandwidth product of >22 kilohertz); and store the processed information in the memory array with performance on par with industrial standards (retention time of 108 seconds, program/erase voltages of ±2 volts, and endurance of 106 cycles). The results shed light on the great application potential of epidermal electronic systems in personalized diagnostic and physiological monitoring.

SELECTION OF CITATIONS
SEARCH DETAIL
...