Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 44(7): 2393-9, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20201559

ABSTRACT

The significance of extracellular polymeric substances (EPS) on cell transport and retained bacteria profiles in packed porous media (quartz sand) was examined by direct comparison of the overall deposition kinetics and retained profiles of untreated bacteria (with EPS) versus those of treated cells (without EPS) from the same cell type. Four representative cell types, Pseudomonas sp. QG6 (gram-negative, motile), mutant Escherichia coli BL21 (gram-negative, nonmotile), Bacillus subtilis (gram-positive, motile), and Rhodococcus sp. QL2 (gram-positive, nonmotile), were employed to systematically determine the influence of EPS on cell transport and deposition behavior. Packed column experiments were conducted for the untreated and treated cells in both NaCl (four ionic strength ranging from 2.5 mM to 20 mM) and CaCl(2) (5 mM) solutions at pH 6.0. The breakthrough plateaus of untreated bacteria were lower than those of treated bacteria for all four cell types under all examined conditions (in both NaCl and CaCl(2) solutions), indicating that the presence of EPS on cell surfaces enhanced cell deposition in porous media regardless of cell type and motility. Retained profiles of both untreated and treated cells for all four cell types deviated from classic filtration theory (log-linear decreases). However, the degree of deviation was greater for all four untreated cells, indicating that the presence of EPS on cell surfaces increased the deviation of retained profiles from classic filtration theory. Elution experiments demonstrated that neither untreated nor treated cells preferentially deposited in secondary energy minima. Furthermore, the release of previously deposited cells in the secondary energy minima did not change the shape of retained cell profiles, indicating that deposition in secondary energy minima did not produce the observed deviations of retained profiles from classic filtration theory.


Subject(s)
Biopolymers/metabolism , Culture Media/pharmacology , Extracellular Space/metabolism , Gram-Negative Bacteria/metabolism , Gram-Positive Bacteria/metabolism , Cation Exchange Resins/pharmacology , Escherichia coli/drug effects , Escherichia coli/metabolism , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Porosity/drug effects , Pseudomonas/drug effects , Pseudomonas/metabolism , Rhodococcus/drug effects , Rhodococcus/metabolism
2.
Environ Sci Technol ; 43(15): 5699-704, 2009 Aug 01.
Article in English | MEDLINE | ID: mdl-19731665

ABSTRACT

The deposition kinetics of extracellular polymeric substances (EPS) on silica surfaces were examined in both monovalent and divalent solutions under a variety of environmentally relevant ionic strength and pH conditions by employing a quartz crystal microbalance with dissipation (DCM-D). Soluble EPS (SEPS) and bound EPS (BEPS) were extracted from four bacterial strains with different characteristics. Maximum favorable deposition rates (k(fa)) were observed for all EPS at low ionic strengths in both NaCl and CaCl2 solutions. With the increase of ionic strength, k(fa) decreased due to the simultaneous occurrence of EPS aggregation in solutions. Deposition efficiency (alpha; the ratio of deposition rates obtained under unfavorable versus corresponding favorable conditions) for all EPS increased with increasing ionic strength in both NaCl and CaCl2 solutions, which agreed with the trends of zeta potentials and was consistent with the classic Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Comparison of alpha for SEPS and BEPS extracted from the same strain showed that the trends of alpha did not totally agree with trends of zeta potentials, indicating the deposition kinetics of EPS on silica surfaces were not only controlled by DLVO interactions, but also non-DLVO forces. Close comparison of alpha for EPS extracted from different sources showed alpha increased with increasing proteins to polysaccharides ratio. Subsequent experiments for EPS extracted from the same strain but with different proteins to polysaccharides ratios and from activated sludge also showed that alpha were largest for EPS with greatest proteins to polysaccharides ratio. Additional experiments for pure protein and solutions with different pure proteins to pure saccharides ratios further corroborated that larger proteins to polysaccharides ratio resulted in greater EPS deposition.


Subject(s)
Polymers/chemistry , Silicon Dioxide/chemistry , Calcium Chloride/chemistry , Crystallization , Dose-Response Relationship, Drug , Environmental Monitoring/methods , Ions , Kinetics , Models, Statistical , Polysaccharides/chemistry , Quartz , Salts , Sodium Chloride/chemistry , Surface Properties
3.
Environ Sci Technol ; 43(7): 2308-14, 2009 Apr 01.
Article in English | MEDLINE | ID: mdl-19452879

ABSTRACT

The significance of extracellular polymer substances (EPS) on cell deposition on silica surfaces was examined by direct comparison of the deposition kinetics of untreated "intact" bacteria versus those from the same strain but with EPS removal via cation exchange resin (CER) treatment using a quartz crystal microbalance with dissipation (QCM-D). Four bacterial strains, mutant Escherichia coli BL21 (gram-negative, nonmotile), Pseudomonas sp QG6 (gram-negative, motile), Rhodococcus sp QL2 (gram-positive, nonmotile), and Bacillus subtilis (gram-positive, motile), were employed to determine the influence of EPS on cell deposition. Experiments were conducted in both monovalent (NaCl) and divalent (CaCl2) solutions under a variety of environmentally relevant ionic strength ranging from 1 to 100 mM at pH 6.0. The effectiveness of EPS removal via CER method was ensured by biochemical composition analysis of EPS solutions and further confirmed by FTIR analysis. Comparable zeta potentials were observed for untreated and CER treated bacterial cells in both NaCl and CaCl2 solutions, indicating that removal of EPS from cell surfaces via CER treatment did not affect the electrokinetic properties of the cell surfaces for all four strains. However, observed deposition efficiencies (alpha) were greater for untreated cells relative to those with CER treated cells across the entire ionic strength range examined in both NaCI and CaCl2 solutions for all four bacterial strains. These results strongly demonstrated that the removal of EPS from cell surfaces for all four strains decreased the deposition of bacteria on silica surfaces. This study clearly showed that the enhancement of cell deposition on silica surfaces due to the presence of EPS on cell surfaces was relevant to all bacterial strains examined regardless of cell types and motility.


Subject(s)
Bacteria/metabolism , Polymers/metabolism , Kinetics , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...