Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
medRxiv ; 2020 Sep 29.
Article in English | MEDLINE | ID: mdl-33024977

ABSTRACT

We sequenced the genomes of 5,085 SARS-CoV-2 strains causing two COVID-19 disease waves in metropolitan Houston, Texas, an ethnically diverse region with seven million residents. The genomes were from viruses recovered in the earliest recognized phase of the pandemic in Houston, and an ongoing massive second wave of infections. The virus was originally introduced into Houston many times independently. Virtually all strains in the second wave have a Gly614 amino acid replacement in the spike protein, a polymorphism that has been linked to increased transmission and infectivity. Patients infected with the Gly614 variant strains had significantly higher virus loads in the nasopharynx on initial diagnosis. We found little evidence of a significant relationship between virus genotypes and altered virulence, stressing the linkage between disease severity, underlying medical conditions, and host genetics. Some regions of the spike protein - the primary target of global vaccine efforts - are replete with amino acid replacements, perhaps indicating the action of selection. We exploited the genomic data to generate defined single amino acid replacements in the receptor binding domain of spike protein that, importantly, produced decreased recognition by the neutralizing monoclonal antibody CR30022. Our study is the first analysis of the molecular architecture of SARS-CoV-2 in two infection waves in a major metropolitan region. The findings will help us to understand the origin, composition, and trajectory of future infection waves, and the potential effect of the host immune response and therapeutic maneuvers on SARS-CoV-2 evolution.

2.
mBio ; 11(6)2020 10 30.
Article in English | MEDLINE | ID: mdl-33127862

ABSTRACT

We sequenced the genomes of 5,085 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains causing two coronavirus disease 2019 (COVID-19) disease waves in metropolitan Houston, TX, an ethnically diverse region with 7 million residents. The genomes were from viruses recovered in the earliest recognized phase of the pandemic in Houston and from viruses recovered in an ongoing massive second wave of infections. The virus was originally introduced into Houston many times independently. Virtually all strains in the second wave have a Gly614 amino acid replacement in the spike protein, a polymorphism that has been linked to increased transmission and infectivity. Patients infected with the Gly614 variant strains had significantly higher virus loads in the nasopharynx on initial diagnosis. We found little evidence of a significant relationship between virus genotype and altered virulence, stressing the linkage between disease severity, underlying medical conditions, and host genetics. Some regions of the spike protein-the primary target of global vaccine efforts-are replete with amino acid replacements, perhaps indicating the action of selection. We exploited the genomic data to generate defined single amino acid replacements in the receptor binding domain of spike protein that, importantly, produced decreased recognition by the neutralizing monoclonal antibody CR3022. Our report represents the first analysis of the molecular architecture of SARS-CoV-2 in two infection waves in a major metropolitan region. The findings will help us to understand the origin, composition, and trajectory of future infection waves and the potential effect of the host immune response and therapeutic maneuvers on SARS-CoV-2 evolution.IMPORTANCE There is concern about second and subsequent waves of COVID-19 caused by the SARS-CoV-2 coronavirus occurring in communities globally that had an initial disease wave. Metropolitan Houston, TX, with a population of 7 million, is experiencing a massive second disease wave that began in late May 2020. To understand SARS-CoV-2 molecular population genomic architecture and evolution and the relationship between virus genotypes and patient features, we sequenced the genomes of 5,085 SARS-CoV-2 strains from these two waves. Our report provides the first molecular characterization of SARS-CoV-2 strains causing two distinct COVID-19 disease waves.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/virology , Pneumonia, Viral/virology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Sequence , Amino Acid Substitution , Antibodies, Neutralizing/immunology , Base Sequence , Betacoronavirus/immunology , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Coronavirus RNA-Dependent RNA Polymerase , Genome, Viral , Genotype , Humans , Machine Learning , Models, Molecular , Molecular Diagnostic Techniques , Pandemics , Phylogeny , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/genetics , SARS-CoV-2 , Sequence Analysis, Protein , Spike Glycoprotein, Coronavirus/immunology , Texas/epidemiology , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics
3.
Sci Rep ; 9(1): 15917, 2019 11 04.
Article in English | MEDLINE | ID: mdl-31685907

ABSTRACT

Cardiac muscle cells lack regenerative capacity in postnatal mammals. A concerted effort has been made in the field to determine regulators of cardiomyocyte proliferation and identify therapeutic strategies to induce division, with the ultimate goal of regenerating heart tissue after a myocardial infarct. We sought to optimize a high throughput screening protocol to facilitate this effort. We developed a straight-forward high throughput screen with simple readouts to identify small molecules that modulate cardiomyocyte proliferation. We identify human induced pluripotent stem cell-derived cardiomyocytes (hiCMs) as a model system for such a screen, as a very small subset of hiCMs have the potential to proliferate. The ability of hiCMs to proliferate is density-dependent, and cell density has no effect on the outcome of proliferation: cytokinesis or binucleation. Screening a compound library revealed many regulators of proliferation and cell death. We provide a comprehensive and flexible screening procedure and cellular phenotype information for each compound. We then provide an example of steps to follow after this screen is performed, using three of the identified small molecules at various concentrations, further implicating their target kinases in cardiomyocyte proliferation. This screening platform is flexible and cost-effective, opening the field of cardiovascular cell biology to laboratories without substantial funding or specialized training, thus diversifying this scientific community.


Subject(s)
Cell Proliferation , High-Throughput Screening Assays/methods , Myocytes, Cardiac/cytology , Animals , Apoptosis/drug effects , Cell Culture Techniques/instrumentation , Cell Differentiation , Cell Proliferation/drug effects , Cytokinesis , High-Throughput Screening Assays/instrumentation , Induced Pluripotent Stem Cells/cytology , Ki-67 Antigen/metabolism , Mice , Models, Biological , Myocytes, Cardiac/metabolism , Phenotype , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...