Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Cancer Cell ; 41(10): 1803-1816.e8, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37738974

ABSTRACT

Unlike many other hematologic malignancies, Richter syndrome (RS), an aggressive B cell lymphoma originating from indolent chronic lymphocytic leukemia, is responsive to PD-1 blockade. To discover the determinants of response, we analyze single-cell transcriptome data generated from 17 bone marrow samples longitudinally collected from 6 patients with RS. Response is associated with intermediate exhausted CD8 effector/effector memory T cells marked by high expression of the transcription factor ZNF683, determined to be evolving from stem-like memory cells and divergent from terminally exhausted cells. This signature overlaps with that of tumor-infiltrating populations from anti-PD-1 responsive solid tumors. ZNF683 is found to directly target key T cell genes (TCF7, LMO2, CD69) and impact pathways of T cell cytotoxicity and activation. Analysis of pre-treatment peripheral blood from 10 independent patients with RS treated with anti-PD-1, as well as patients with solid tumors treated with anti-PD-1, supports an association of ZNF683high T cells with response.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Lymphoma, Large B-Cell, Diffuse , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , CD8-Positive T-Lymphocytes , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Gene Expression Regulation , Immunotherapy
2.
Adv Sci (Weinh) ; 9(14): e2103241, 2022 05.
Article in English | MEDLINE | ID: mdl-35289122

ABSTRACT

Lymphoid follicles (LFs) are responsible for generation of adaptive immune responses in secondary lymphoid organs and form ectopically during chronic inflammation. A human model of ectopic LF formation will provide a tool to understand LF development and an alternative to non-human primates for preclinical evaluation of vaccines. Here, it is shown that primary human blood B- and T-lymphocytes autonomously assemble into ectopic LFs when cultured in a 3D extracellular matrix gel within one channel of a two-channel organ-on-a-chip microfluidic device. Superfusion via a parallel channel separated by a microporous membrane is required for LF formation and prevents lymphocyte autoactivation. These germinal center-like LFs contain B cells expressing Activation-Induced Cytidine Deaminase and exhibit plasma cell differentiation upon activation. To explore their utility for seasonal vaccine testing, autologous monocyte-derived dendritic cells are integrated into LF Chips. The human LF chips demonstrate improved antibody responses to split virion influenza vaccination compared to 2D cultures, which are enhanced by a squalene-in-water emulsion adjuvant, and this is accompanied by increases in LF size and number. When inoculated with commercial influenza vaccine, plasma cell formation and production of anti-hemagglutinin IgG are observed, as well as secretion of cytokines similar to vaccinated humans over clinically relevant timescales.


Subject(s)
Influenza Vaccines , Influenza, Human , Tertiary Lymphoid Structures , Animals , Antibodies, Viral , Humans , Influenza, Human/prevention & control , Lab-On-A-Chip Devices , Seasons , Vaccination
3.
Cell ; 184(19): 4953-4968.e16, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34492226

ABSTRACT

Severe coronavirus disease 2019 (COVID-19) is characterized by overproduction of immune mediators, but the role of interferons (IFNs) of the type I (IFN-I) or type III (IFN-III) families remains debated. We scrutinized the production of IFNs along the respiratory tract of COVID-19 patients and found that high levels of IFN-III, and to a lesser extent IFN-I, characterize the upper airways of patients with high viral burden but reduced disease risk or severity. Production of specific IFN-III, but not IFN-I, members denotes patients with a mild pathology and efficiently drives the transcription of genes that protect against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In contrast, compared to subjects with other infectious or noninfectious lung pathologies, IFNs are overrepresented in the lower airways of patients with severe COVID-19 that exhibit gene pathways associated with increased apoptosis and decreased proliferation. Our data demonstrate a dynamic production of IFNs in SARS-CoV-2-infected patients and show IFNs play opposing roles at distinct anatomical sites.


Subject(s)
COVID-19/pathology , Interferons/metabolism , Respiratory System/virology , Severity of Illness Index , Age Factors , Aging/pathology , COVID-19/genetics , COVID-19/immunology , Epithelial Cells/pathology , Epithelial Cells/virology , Gene Expression Regulation , Humans , Interferons/genetics , Leukocytes/pathology , Leukocytes/virology , Lung/pathology , Lung/virology , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/virology , Viral Load
4.
J Exp Med ; 218(4)2021 04 05.
Article in English | MEDLINE | ID: mdl-33651880

ABSTRACT

The ability to monitor anti-tumor CD8+ T cell responses in the blood has tremendous therapeutic potential. Here, we used paired single-cell RNA and TCR sequencing to detect and characterize "tumor-matching" (TM) CD8+ T cells in the blood of mice with MC38 tumors or melanoma patients using the TCR as a molecular barcode. TM cells showed increased activation compared with nonmatching T cells in blood and were less exhausted than matching cells in tumors. Importantly, PD-1, which has been used to identify putative circulating anti-tumor CD8+ T cells, showed poor sensitivity for identifying TM cells. By leveraging the transcriptome, we identified candidate cell surface markers for TM cells in mice and patients and validated NKG2D, CD39, and CX3CR1 in mice. These data show that the TCR can be used to identify tumor-relevant cells for characterization, reveal unique transcriptional properties of TM cells, and develop marker panels for tracking and analysis of these cells.


Subject(s)
Adenocarcinoma/immunology , CD8-Positive T-Lymphocytes/immunology , Colonic Neoplasms/immunology , Melanoma/blood , Melanoma/immunology , Single-Cell Analysis/methods , Skin Neoplasms/blood , Skin Neoplasms/immunology , Adenocarcinoma/pathology , Animals , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Colonic Neoplasms/pathology , Female , Humans , Mice , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/metabolism , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...