Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Pain Res ; 10: 2703-2709, 2017.
Article in English | MEDLINE | ID: mdl-29238213

ABSTRACT

Paracetamol is arguably the most commonly used analgesic and antipyretic drug worldwide, however its mechanism of action is still not fully established. It has been shown to exert effects through multiple pathways, some actions suggested to be mediated via N-arachidonoylphenolamine (AM404). AM404, formed through conjugation of paracetamol-derived p-aminophenol with arachidonic acid in the brain, is an activator of the capsaicin receptor, TRPV1, and inhibits the reuptake of the endocannabinoid, anandamide, into postsynaptic neurons, as well as inhibiting synthesis of PGE2 by COX-2. However, the presence of AM404 in the central nervous system following administration of paracetamol has not yet been demonstrated in humans. Cerebrospinal fluid (CSF) and blood were collected from 26 adult male patients between 10 and 211 minutes following intravenous administration of 1 g of paracetamol. Paracetamol was measured by high-performance liquid chromatography with UV detection. AM404 was measured by liquid chromatography-tandem mass spectrometry. AM404 was detected in 17 of the 26 evaluable CSF samples at 5-40 nmol⋅L-1. Paracetamol was measurable in CSF within 10 minutes, with a maximum measured concentration of 60 µmol⋅L-1 at 206 minutes. This study is the first to report on the presence of AM404 in human CSF following paracetamol administration. This may represent an important finding in our understanding of paracetamol's mechanism of action, although measured concentrations were far below the previously documented IC50 for this metabolite.

2.
Proc Natl Acad Sci U S A ; 111(10): 3817-22, 2014 Mar 11.
Article in English | MEDLINE | ID: mdl-24569863

ABSTRACT

Insulin resistance and associated metabolic sequelae are common in chronic kidney disease (CKD) and are positively and independently associated with increased cardiovascular mortality. However, the pathogenesis has yet to be fully elucidated. 11ß-Hydroxysteroid dehydrogenase type 1 (11ßHSD1) catalyzes intracellular regeneration of active glucocorticoids, promoting insulin resistance in liver and other metabolic tissues. Using two experimental rat models of CKD (subtotal nephrectomy and adenine diet) which show early insulin resistance, we found that 11ßHSD1 mRNA and protein increase in hepatic and adipose tissue, together with increased hepatic 11ßHSD1 activity. This was associated with intrahepatic but not circulating glucocorticoid excess, and increased hepatic gluconeogenesis and lipogenesis. Oral administration of the 11ßHSD inhibitor carbenoxolone to uremic rats for 2 wk improved glucose tolerance and insulin sensitivity, improved insulin signaling, and reduced hepatic expression of gluconeogenic and lipogenic genes. Furthermore, 11ßHSD1(-/-) mice and rats treated with a specific 11ßHSD1 inhibitor (UE2316) were protected from metabolic disturbances despite similar renal dysfunction following adenine experimental uremia. Therefore, we demonstrate that elevated hepatic 11ßHSD1 is an important contributor to early insulin resistance and dyslipidemia in uremia. Specific 11ßHSD1 inhibitors potentially represent a novel therapeutic approach for management of insulin resistance in patients with CKD.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , Insulin Resistance/physiology , RNA, Messenger/metabolism , Renal Insufficiency, Chronic/complications , Uremia/enzymology , 11-beta-Hydroxysteroid Dehydrogenase Type 1/antagonists & inhibitors , 11-beta-Hydroxysteroid Dehydrogenase Type 1/genetics , Analysis of Variance , Animals , Blood Glucose , Carbenoxolone/administration & dosage , Carbenoxolone/pharmacology , Corticosterone/blood , Cytokines/blood , Enzyme-Linked Immunosorbent Assay , Glucocorticoids/metabolism , Immunoblotting , Insulin/blood , Liver/metabolism , Mice , Mice, Knockout , Rats , Rats, Wistar , Real-Time Polymerase Chain Reaction , Uremia/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...