Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Biochem Biophys ; 757: 110024, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38703803

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) remains a prevailing etiological agent behind hepatocyte diseases like chronic liver disease. The spectrum of processes involved in NAFLD stages includes hepatic steatosis, non-alcoholic fatty liver, and non-alcoholic steatohepatitis (NASH). Without intervention, the progression of NASH can further deteriorate into cirrhosis and ultimately, hepatocellular carcinoma. The cardinal features that characterize NAFLD are insulin resistance, lipogenesis, oxidative stress and inflammation, extracellular matrix deposition and fibrosis. Due to its complex pathogenesis, existing pharmaceutical agents fail to take a curative or ameliorative effect on NAFLD. Consequently, it is imperative to identify novel therapeutic targets and strategies for NAFLD, ideally to improve the aforementioned key features in patients. As an enterohepatic regulator of bile acid homeostasis, lipid metabolism, and inflammation, FarnesoidX receptor (FXR) is an important pharmacological target for the treatment of NAFLD. Manipulating FXR to regulate lipid metabolic signaling pathways is a potential mechanism to mitigate NAFLD. Therefore, elucidating the modulatory character of FXR in regulating lipid metabolism in NAFLD has the potential to yield groundbreaking perspectives for drug design. This review details recent advances in the regulation of lipid depletion in hepatocytes and investigates the pivotal function of FXR in the progress of NAFLD.


Subject(s)
Lipid Metabolism , Non-alcoholic Fatty Liver Disease , Receptors, Cytoplasmic and Nuclear , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Humans , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Lipid Metabolism/drug effects , Bile Acids and Salts/metabolism , Signal Transduction/drug effects
2.
J Ethnopharmacol ; 321: 117483, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38008273

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ulcerative colitis (UC) is a recurring chronic intestinal disease that can be debilitating and in severe cases, may further lead to cancer. However, all these treatment techniques still suffer from drug dependence, adverse effects and poor patient compliance. Therefore, there is an urgent need to seek new therapeutic strategies. In traditional Chinese medicine, Rabdosia rubescens (Hemsl.) H.Hara has the effects of clearing heat-toxin and promoting blood circulation to relieve pain, it is wildly used for treating inflammatory diseases such as sore throats and tonsillitis. Ponicidin is an important molecule for the anti-inflammatory effects of Rabdosia rubescens, but it has not been studied in the treatment of colitis. HSP90 is the most critical regulator in the development and progression of inflammatory diseases such as UC. AIM OF THE STUDY: The aim of this study was to explore the anti-inflammatory activity of ponicidin and its mechanism of effect in vitro and in vivo, as well as to identify the target proteins on which ponicidin may interact. MATERIAL AND METHODS: 2.5% (w/v) dextran sulfate sodium (DSS) was used to induce C57BL/6 mice to form an ulcerative colitis model, and then 5 mg/kg and 10 mg/kg ponicidin was given for treatment, while the Rabdosia rubescens extract group and Rabdosia rubescens diterpene extract group were set up for comparison of the efficacy of ponicidin. At the end of modeling and drug administration, mouse colon tissues were taken, and the length of colon was counted, inflammatory factors and inflammatory signaling pathways were detected. RAW264.7 cells were induced to form cell inflammation model with 1 µg/mL Lipopolysaccharide (LPS) for 24 h. 1 µM, 2 µM and 4 µM ponicidin were given at the same time, and after the end of the modeling and administration of the drug, the inflammatory factors and inflammatory signaling pathways were detected by qRT-PCR, western blotting, immunofluorescence and other methods. In vitro, target angling and combined with mass spectrometry were used to search for relevant targets of ponicidin, while isothermal titration calorimetry (ITC), protease degradation experiments and molecular dynamics simulations were used for further confirmation of the mode of action and site of action between ponicidin and target proteins. RESULTS: Ponicidin can alleviate DSS and LPS-induced inflammation by inhibiting the MAPK signaling pathway at the cellular and animal levels. In vitro, we confirmed that ponicidin can interact with the middle domain of HSP90 and induce the conformational changes in the N-terminal domain. CONCLUSION: These innovative efforts identified the molecular target of ponicidin in the treatment of UC and revealed the molecular mechanism of its interaction with HSP90.


Subject(s)
Colitis, Ulcerative , Colitis , Diterpenes , Animals , Mice , Humans , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Lipopolysaccharides/pharmacology , Mice, Inbred C57BL , Diterpenes/pharmacology , Anti-Inflammatory Agents/adverse effects , Inflammation/drug therapy , Dextran Sulfate/toxicity , Disease Models, Animal , Colon , Colitis/drug therapy , NF-kappa B/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...