Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Exp Hematol Oncol ; 13(1): 43, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637863

ABSTRACT

Chimeric antigen receptors (CAR) are engineered fusion proteins that target T-cells to specific surface antigens of tumor cells to generate effective anti-tumor responses. CAR T-cell therapy is playing an increasingly important role in the treatment of relapsed/refractory B-cell malignancies (R/R BCM). Attempting to make CAR T-cells safer and more effective in treating R/R BCM, various novel engineered CAR T-cell agents are currently in the research and development or clinical trial stages. We have summarized here the latest reports on the novel CAR T-cell therapies for R/R BCM presented at the 2023 ASH Annual Meeting as well as the latest updates in related clinical trials.

2.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(1): 1-5, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38387891

ABSTRACT

OBJECTIVE: To analyze the immune reconstitution after BTKi treatment in patients with chronic lymphocytic leukemia (CLL). METHODS: The clinical and laboratorial data of 59 CLL patients admitted from January 2017 to March 2022 in Fujian Medical University Union Hospital were collected and analyzed retrospectively. RESULTS: The median age of 59 CLL patients was 60.5(36-78). After one year of BTKi treatment, the CLL clones (CD5 +/CD19 +) of 51 cases (86.4%) were significantly reduced, in which the number of cloned-B cells decreased significantly from (46±6.1)×109/L to (2.3±0.4)×109/L (P =0.0013). But there was no significant change in the number of non-cloned B cells (CD19 + minus CD5 +/CD19 +). After BTKi treatment, IgA increased significantly from (0.75±0.09)g/L to (1.31±0.1)g/L (P <0.001), while IgG and IgM decreased from (8.1±0.2)g/L and (0.52±0.6)g/L to (7.1±0.1)g/L and (0.47±0.1)g/L, respectively (P <0.001, P =0.002). BTKi treatment resulted in a significant change in T cell subpopulation of CLL patients, which manifested as both a decrease in total number of T cells from (2.1±0.1)×109/L to (1.6±0.4)×109/L and NK/T cells from (0.11±0.1)×109/L to (0.07±0.01)×109/L (P =0.042, P =0.038), both an increase in number of CD4 + cells from (0.15±6.1)×109/L to (0.19±0.4)×109/L and CD8 + cells from (0.27±0.01)×109/L to (0.41±0.08)×109/L (both P <0.001). BTKi treatment also up-regulated the expression of interleukin (IL)-2 while down-regulated IL-4 and interferon (IFN)-γ. However, the expression of IL-6, IL-10, and tumor necrosis factor (TNF)-α did not change significantly. BTKi treatment could also restored the diversity of TCR and BCR in CLL patients, especially obviously in those patients with complete remission (CR) than those with partial remission (PR). Before and after BTKi treatment, Shannon index of TCR in patients with CR was 0.02±0.008 and 0.14±0.001 (P <0.001), while in patients with PR was 0.01±0.03 and 0.05±0.02 (P >0.05), respectively. Shannon index of BCR in patients with CR was 0.19±0.003 and 0.33±0.15 (P <0.001), while in patients with PR was 0.15±0.009 and 0.23±0.18 (P <0.05), respectively. CONCLUSIONS: BTKi treatment can shrink the clone size in CLL patients, promote the expression of IgA, increase the number of functional T cells, and regulate the secretion of cytokines such as IL-2, IL-4, and IFN-γ. BTKi also promote the recovery of diversity of TCR and BCR. BTKi treatment contributes to the reconstitution of immune function in CLL patients.


Subject(s)
Immune Reconstitution , Leukemia, Lymphocytic, Chronic, B-Cell , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Retrospective Studies , Interleukin-4 , Tumor Necrosis Factor-alpha , Immunoglobulin A , Receptors, Antigen, T-Cell
3.
Biomark Res ; 11(1): 58, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37280656

ABSTRACT

BACKGROUND: Chronic lymphocytic leukemia (CLL) is one of the most frequent occurring types of leukemia. It typically occurs in elderly patients and has a highly variable clinical course. At present, the molecular mechanism driving the pathogenesis and progression of CLL is not fully understood. The protein Synaptotagmin 7 (SYT7) encoded by the SYT7 gene has been found to be closely related to the development of various solid tumors, but its role in CLL is unclear. In this study, we investigated the function and molecular mechanism of SYT7 in CLL. METHODS: The expression level of SYT7 in CLL was determined by immunohistochemical staining and qPCR. The role of SYT7 in promoting CLL development was verified by in vivo and in vitro experiments. The molecular mechanism of SYT7 in CLL was elucidated by methods such as GeneChip analysis and Co-immunoprecipitation assay. RESULTS: Malignant behaviors such as proliferation, migration, and anti-apoptosis of CLL cells were significantly inhibited after SYT7 gene knockdown. In contrast, SYT7 overexpression promoted CLL development in vitro. Consistently, the knockdown of SYT7 also inhibited xenograft tumor growth of CLL cells. Mechanistically, SYT7 promoted CLL development by inhibiting SYVN1-mediated KNTC1 ubiquitination. The KNTC1 knockdown also attenuated the effects of SYT7 overexpression on development of CLL. CONCLUSIONS: SYT7 regulates the progression of CLL through SYVN1-mediated KNTC1 ubiquitination, which has potential value for molecular targeted therapy of CLL.

4.
Mitochondrial DNA B Resour ; 7(3): 474-475, 2022.
Article in English | MEDLINE | ID: mdl-35295909

ABSTRACT

Indigofera stachyodes Lindl. is a traditional medicinal plant in southwestern China. In this study, we report the complete chloroplast genome sequence of I. stachyodes, using next-generation sequencing technology. The complete chloroplast genome of I. stachyodes was 158,039 bp in length with an overall GC content 35.80%, containing a large single-copy (LSC) region of 88,772 bp, a small single-copy (SSC) region of 18,733 bp, and a pair of inverted repeats (IRs) regions of 25,267 bp. In total, there are 128 genes (83 protein-coding genes (PCGs), eight ribosomal RNA (rRNA) genes, and 37 tRNA genes) in the whole chloroplast genome, including 113 unique genes (78 unique PCGs, 31 unique tRNAs, and four unique rRNAs). The phylogenetic analysis indicated that I. stachyodes formed a monophyletic clade with I. tinctoria and I. linifolia, showing that they have close relationship. The complete chloroplast genome of I. stachyodes provides valuable genomic information for the phylogeny, molecular identification and sustainable utilization of this species.

5.
Mitochondrial DNA B Resour ; 7(3): 468-470, 2022.
Article in English | MEDLINE | ID: mdl-35295911

ABSTRACT

Periploca forrestii Schltr. is a traditional medicine plant in southwestern China. In this study, we characterize the complete chloroplast (cp) genome of P. forrestii based on next-generation sequencing. The cp genome is 154,140 bp in size with an overall GC content 38.2%, including a large single-copy (LSC) region (84,941 bp), a small single-copy (SSC) region of 17,619 bp, and two inverted repeats (IRs) regions, each of 25,790 bp. A total of 130 genes (85 protein-coding genes, 8 ribosomal RNA (rRNA) genes, and 37 transfer RNA (tRNA genes)) are annotated in the whole chloroplast genome, containing 113 unique genes (79 unique CDSs, 30 unique tRNAs, and 4 unique rRNAs). The phylogenetic analysis indicated that P. forrestii formed a monophyletic clade with the same genus plant P. sepium, showing that they have close relationship. The complete chloroplast genome of P. forrestii provides valuable genomic information for the phylogeny, molecular identification and sustainable utilization of this species.

SELECTION OF CITATIONS
SEARCH DETAIL
...