Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 15: 1356903, 2024.
Article in English | MEDLINE | ID: mdl-38550873

ABSTRACT

Introduction: Spent mushroom substrate (SMS) is a solid waste in agricultural production that contains abundant lignocellulosic fibers. The indiscriminate disposal of SMS will lead to significant resource waste and pollution of the surrounding environment.The isolation and screening of microorganisms with high cellulase degradation capacity is the key to improving SMS utilization. Methods: The cellulose-degrading microbial consortiums were constructed through antagonism and enzyme activity test. The effect of microbial consortiums on lignocellulose degradation was systematically evaluated by SMS liquid fermentation experiments. Results: In this study, four strains of cellulose-degrading bacteria were screened, and F16, F, and F7 were identified as B. amyloliquefaciens, PX1 identified as B. velezensis. At the same time, two groups of cellulose efficient degrading microbial consortiums (PX1 + F7 and F16 + F) were successfully constructed. When SMS was used as the sole carbon source, their carboxymethyl cellulase (CMCase) activities were 225.16 and 156.63 U/mL, respectively, and the filter paper enzyme (FPase) activities were 1.91 and 1.64 U/mL, respectively. PX1 + F7 had the highest degradation rate of hemicellulose and lignin, reaching 52.96% and 52.13%, respectively, and the degradation rate of F16 + F was as high as 56.30%. Field emission scanning electron microscopy (FESEM) analysis showed that the surface microstructure of SMS changed significantly after microbial consortiums treatment, and the change of absorption peak in Fourier transform infrared spectroscopy (FTIR) and the increase of crystallinity in X-ray diffraction (XRD) confirmed that the microbial consortiums had an actual degradation effect on SMS. The results showed that PX1 + F7 and F16 + F could effectively secrete cellulase and degrade cellulose, which had practical significance for the degradation of SMS. Discussion: In this study, the constructed PX1 + F7 and F16 + F strains can effectively secrete cellulase and degrade cellulose, which holds practical significance in the degradation of SMS. The results can provide technical support for treating high-cellulose solid waste and for the comprehensive utilization of biomass resources.

2.
PLoS One ; 18(10): e0292168, 2023.
Article in English | MEDLINE | ID: mdl-37816018

ABSTRACT

To overcome the corrosion of hydrofluoric acid on the ICP OES injection system in the acid dissolution system, this paper makes some improvements based on the traditional open digestion. The improved method does not require the complete removal of hydrofluoric acid. After appropriate digestion of the sample with a mixed acid, the solution can be transferred to a colorimetric tube containing ammonium hydroxide solution to give the final volume for analysis. In this paper, two-point standard curves are plotted using soil standards and process blanks, which is not only convenient but also overcomes the interference of the matrix effect. Through continuous experiments, the preferred ratio of mixed acid is 3 mL nitric acid + 5 mL hydrofluoric acid, and the concentration of ammonia solution is 0.5%. The spectral lines of the measured elements V (292.4), Cr (283.5), Co (228.6), Ni (231.6), Cu (324.7), Zn (213.8) and Pb (220.3) were determined. The method quantification limits of the seven measured elements V, Cr, Co, Ni, Cu, Zn and Pb were 0.909, 4.32, 0.269, 0.261, 0.968, 3.69 and 2.64 µg g-1, respectively, and the precision was 3.5%, 5.2%, 4.8%, 2.4%, 6.1% and 4.5%, respectively. After processing six national standard materials according to the experimental method, the measured values of each measured element were basically in agreement with the certified values, indicating that this method is fully feasible for the measurement of V, Cr, Co, Ni, Cu, Zn and Pb in soil. This method greatly improves the efficiency of pretreatment and is particularly suitable for analysing large batches of samples.


Subject(s)
Ammonia , Trace Elements , Ammonia/analysis , Soil , Hydrofluoric Acid , Lead/analysis , Solubility , Trace Elements/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...